Communications: electrical – Condition responsive indicating system – Specific condition
Reexamination Certificate
2000-09-21
2002-12-17
Tong, Nina (Department: 2632)
Communications: electrical
Condition responsive indicating system
Specific condition
C340S568100, C340S557000, C324S452000, C324S457000, C324S072000, C324S071100
Reexamination Certificate
active
06496114
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method and apparatus for enhancing the detection of various entities and objects using dieletrokinesis. In particular, the instant invention is directed to a method and apparatus for locating various entities, including animate human beings and animals, as well as inanimate objects, such as for example, certain types of plastics, by observing and detecting a force and subsequent resulting torque, acceleration, vibration or other measurable quantifiable manifestation of the force created by the non-uniform three-dimensional electric field spatial gradient pattern exhibited uniquely by the entity or object and being detected by the device of the present invention as used by the device's human operator. According to the present invention, incorporation of laser energy produces a localized region by which the dielectrophoresis force and torque are significantly increased, thereby enhancing detection when compared to devices that do not use lasers.
2. Description of Related Art
The detection of animate entities and inanimate objects presence and/or absence, irrespective of the presence of intervening vision-obstructing structures, electromagentic interference (EMI), weather conditions, and the like, has uses in diverse applications, including law enforcement, military operations, firefighting and rescue, emergency services, transportation security in pre-boarding airplanes, trains and automobiles, construction (new and old), anti-shoplifting protection, and various other security and non-security related fields and operations.
My prior U.S. Pat. No. 5,748,088, entitled “Device and Method Using Dielectrokinesis to Locate Entities”, issued May 5, 1998, the disclosure of which is incorporated herein by reference in its entirety, describes the use of a phenomenon known as dielelectrophoresis and resulting dielectrokinesis to detect the presence and/or absence of entites regardless of whether the entities being detected are visually obscured.
In summary, as described in detail in U.S. Pat. No. 5,748,088, dielectrophoresis describes the force and subsequent torque mechanical behavior of initially neutral matter that is dielectrical polarization charged via induction by external spatially non-uniform electric fields. The severity of the spatial non-uniformity of the electric field is measured by the spatial gradient, i.e., spatial rate of change, of the electric field. The fundamental operating principle of the dielectrophoresis effect is that the force (or torque) generated always seeks to point in the same direction, i.e., toward the maximum local electric field gradient, independent of time or sign (+/−).
The dielectrophoretic force depends upon five factors that are multiplied together to arrive at the force. These factors include: shape and volume of the initially neutral matter; the relative polarizability of the neutral matter and the surrounding media (e.g., air, air plus barriers, water vapor, etc.); the external electric field; and the spatial gradient of the external electric field. See, e.g., H. A. Pohl, Dielectrophoresis, Cambridge University Press (1978).
The device described in U.S. Pat. No. 5,748,088 uses the force resulting from the non-uniform electric field squared spatial gradient three-dimensional pattern exhibited uniquely by an entity to indicate the precise location and direction of the subject entity relative to the device's operator. The electrokinetic effect known as dieletrophoresis is used to induce a force and subsequent resulting torque on an antenna and other component parts of the device to provide a rapid directional location indication of the subject entity.
Additionally, my co-pending U.S. patent application Ser. No. 09/071,825, entitled “Inanimate Entity Line-of-Bearing Location Method Via Linking Material-Specific Non-Uniform Static Electrification Spatial Gradient Pattern to Dielectrophoresis”, filed May 4, 1998, and U.S. patent application Ser. No. 09/071,806, entitled “Animate Entities Line-of-Bearing Location Device and Method Linking Species Specific Non-Uniform Electric Field Pattern of Heart ECG to Dielectrophoresis”, filed May 4, 1998, the disclosures of which are incorporated herein by reference in their entireties, describe the use of dielectrophoresis to detect the location of inanimate materials and animate entities by coupling the non-uniform electric field spatial gradient pattern via dielectrophoresis to a characteristic force and subsequent torque on a high aspect ratio (length/radius) antenna and selective dielectric polarization matching and filtering components in a locating device giving a real-time updated line-of-bearing to the entity or material maximum surface electric field spatial gradient and hence to the entity or object itself, even if an entity is located behind vision-obscuring barriers made of metals, dielectrics, plastics, earth, wood, etc. and/or EMI is present.
However, the method and device of U.S. Pat. No. 5,748,088, U.S. patent application Ser. No. 09/071,825 and U.S. patent application Ser. No. 09/071,806 have certain limitations relating to ultimate range (i.e., maximum distance of detection), strength of force and subsequent torque manifestation, and the line-of-bearing locator response time. Accordingly, what is needed is a means for improving and enhancing the effectiveness of known detection devices that rely on dielectrokinesis for detecting entities and objects.
SUMMARY OF THE INVENTION
The present invention provides an improved and enhanced method and apparatus using dielectrokinesis to locate objects and entities that overcomes the limitations attendant with previous dielectrokinetic detection devices and is an improvement over my prior inventions described in U.S. Pat. No. 5,748,088 and U.S. patent application Ser. Nos. 09/071,825 and 09/071,806. In particular, the present invention uses laser energy to enhance the dielectrokinetic effect by creating a localized region of significantly higher dielectric constant via air's absorption of the laser's radiation and other properties which, in turn, significantly increases the dielectrophoretic force and resulting torque, and lowers the response time by preferentially directionally orienting or channeling the non-uniformity of the electric field line generated by the entity or object target towards the laser beam region.
Dielectrophoresis is one of five known electrokinetic effects (the other four being electrophoresis, electro-osmosis, Dorn effect, and streaming potential) and describes the forces affecting the mechanical behavior of initially neutral matter that is dielectrically polarized by induction via spatially non-uniform electric fields. The spatial non-uniformity of an electric field can be measured by the spatial gradient of the electric field. The dielectrophoresis force depends non-linearly upon several factors, including the dielectric polarizibility of the surrounding medium (air plus any intervening walls, trees, etc.), the dielectric polarizibility and geometry of the initially neutral matter (device's antenna and other component parts of the device), and the spatial gradient of the square of the target's local electric field distribution as detected at the device's antenna and other component parts. The spatial gradient is measured by the dielectrophoresis force produced by the polarization charge on the device's antenna and other component parts, and this force is a constant direction seeking force always pointing (or trying to point) the device's antenna and other component parts toward the maximum gradient in the three-dimensional non-uniform electric field squared spatial gradient pattern uniquely exhibited by a predetermined entity type.
The constant direction seeking force is highly variable in magnitude as a function of the angular position and radial position of the entity-to-be-located with respect to the device's antenna and other component parts of the device, and upon the effective
DKL International, Inc.
Nixon & Vanderhye P.C.
Tong Nina
LandOfFree
Method and apparatus using laser enhanced dielectrokinesis... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus using laser enhanced dielectrokinesis..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus using laser enhanced dielectrokinesis... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2997221