Electric lamp or space discharge component or device manufacturi – Process – With start up – flashing or aging
Reexamination Certificate
2000-02-24
2004-06-01
Ramsey, Kenneth J. (Department: 2879)
Electric lamp or space discharge component or device manufacturi
Process
With start up, flashing or aging
C445S003000, C445S063000
Reexamination Certificate
active
06743066
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a multi electron source serving as an electron source having many electron-emitting devices, a method of manufacturing an image forming apparatus using the multi electron source, an apparatus for manufacturing the multi electron source, and a method of adjusting the multi electron source.
BACKGROUND OF THE INVENTION
Conventionally, two types of devices, namely thermionic and cold cathode devices, are known as electron-emitting devices. Known examples of the cold cathode devices are field emission type electron-emitting devices (to be referred to as FE type electron-emitting devices hereinafter), metal/insulator/metal type electron-emitting devices (to be referred to as MIM type electron-emitting devices hereinafter), and surface-conduction type electron-emitting devices.
Known examples of the FE type electron-emitting devices are described in W. P. Dyke and W. W. Dolan, “Field emission”, Advance in Electron Physics, 8, 89 (1956) and C. A. Spindt, “Physical properties of thin-film field emission cathodes with molybdenum cones”, J. Appl. Phys., 47, 5248 (1976).
A known example of the MIM type electron-emitting devices is described in C. A. Mead, “Operation of tunnel-emission devices”, J. Appl. Phys., 32,646 (1961).
A known example of the surface-conduction type electron-emitting devices is described in, e.g., M. I. Elinson, “Radio Eng. Electron Phys., 10, 1290 (1965) and other examples will be described later.
The surface-conduction type electron-emitting device utilizes the phenomenon that electrons are emitted from a small-area thin film formed on a substrate by flowing a current parallel through the film surface. The surface-conduction type electron-emitting device includes electron-emitting devices using an Au thin film [G. Dittmer, “Thin Solid Films”, 9,317 (1972)], an In
2
O
3
/SnO
2
thin film [M. Hartwell and C. G. Fonstad, “IEEE Trans. ED Conf.”, 519 (1975)], a carbon thin film [Hisashi Araki et al., “Vacuum”, Vol. 26, No. 1, p. 22 (1983)], and the like, in addition to an SnO
2
thin film according to Elinson mentioned above.
FIG. 67
is a plan view showing the device by M. Hartwell et al. described above as a typical example of the device structures of these surface-conduction type electron-emitting devices. In
FIG. 67
, reference numeral
3001
denotes a substrate; and
3004
, a conductive thin film made of a metal oxide formed by sputtering. This conductive thin film
3004
has an H-shaped pattern, as shown in FIG.
67
. An electron-emitting portion
3005
is formed by performing electrification processing (to be referred to as forming processing) with respect to the conductive thin film
3004
. An interval L in
FIG. 67
is set to 0.5 to 1 mm, and a width W is set to 0.1 mm. The electron-emitting portion
3005
is shown in a rectangular shape at the center of the conductive thin film
3004
for the sake of illustrative convenience. However, this does not exactly show the actual position and shape of the electron-emitting portion.
In the above surface-conduction type electron-emitting devices by M. Hartwell et al. and the like, typically the electron-emitting portion
3005
is formed by performing electrification processing called forming processing for the conductive thin film
3004
before electron emission. In forming processing, for example, a constant DC voltage or a DC voltage which increases at a very low rate of, e.g., 1 V/min is applied to the two ends of the conductive thin film
3004
to partially destroy or deform the conductive thin film
3004
, thereby forming the electron-emitting portion
3005
with an electrically high resistance. Note that the destroyed or deformed part of the conductive thin film
3004
has a fissure. Upon application of an appropriate voltage to the conductive thin film
3004
after forming processing, electrons are emitted near the fissure.
As described above, the electron-emitting portion of the surface-conduction type electron-emitting device is formed by processing (forming processing) of flowing a current through a conductive thin film to partially destroy or deform this thin film, thereby forming a fissure. If activation processing is performed subsequently, electron-emitting characteristics can be greatly improved.
In activation processing, the electron-emitting portion formed by forming processing is electrified under appropriate conditions to deposit carbon or a carbon compound around the electron-emitting portion. For example, graphite monocrystalline, graphite polycrystalline, amorphous carbon, or mixture thereof is deposited to a thickness of 500 Å or less around the electron-emitting portion by periodically applying a voltage pulse in a vacuum atmosphere in which an organic substance exists at a proper partial pressure and the total pressure is 10
−2
to 10
−3
Pa. These conditions are merely an example and properly changed in accordance with the material and shape of the surface-conduction type electron-emitting device.
This processing can increase the emission current at the same application voltage typically 100 times or greater the emission current immediately after forming processing. Note that the partial pressure of the organic substance in the vacuum atmosphere is desirably reduced after activation processing. This is called stabilization processing.
The above surface-conduction type electron-emitting devices are advantageous because they have a simple structure and can be easily manufactured. For this reason, many devices can be formed on a wide area. As disclosed in Japanese Patent Laid-Open No. 64-31332 filed by the present applicant, a method of arranging and driving a lot of devices has been studied.
Regarding applications of surface-conduction type electron-emitting devices to, e.g., image forming apparatuses such as an image display apparatus and an image recording apparatus, electron sources, and the like have been studied.
As an application to image display apparatuses, as disclosed in the U.S. Pat. No. 5,066,883 and Japanese Patent Laid-Open No. 2-257551 filed by the present applicant, an image display apparatus using a combination of a surface-conduction type electron-emitting device and a fluorescent substance which emits light upon reception of electrons has been studied. This type of image display apparatus using a combination of the surface-conduction type electron-emitting device and the fluorescent substance is expected to exhibit more excellent characteristics than other conventional image display apparatuses. For example, the above display apparatus is superior to recent popular liquid crystal display apparatuses in that it does not require a backlight because of a self-emission type and has a wide view angle.
The present inventors have examined surface conduction type electron-emitting devices of various materials, various manufacturing methods, and various structures, in addition to the above-mentioned conventional surface conduction type electron-emitting device. Further, the present inventors have made extensive studies on a multi-beam electron source having a large number of surface-conduction type electron-emitting devices, and an image display apparatus using this multi-beam electron source.
The present inventors have examined a multi electron source using an electrical wiring method shown in, e.g., FIG.
68
. That is, a large number of surface-conduction type electron-emitting devices are two-dimensionally arranged in a matrix to obtain a multi electron source, as shown in FIG.
68
.
In
FIG. 68
, reference numeral
4001
denotes a surface-conduction type electron-emitting device;
4002
, a row-direction wiring; and
4003
, a column-direction wiring. The row- and column-direction wirings
4002
and
4003
actually have finite electrical resistances, which are represented as wiring resistances
4004
and
4005
in FIG.
68
. This wiring method is called a simple matrix wiring method.
For the illustrative convenience, the multi electron source is illustrat
Oguchi Takahiro
Suzuki Noritake
Canon Kabushiki Kaisha
Fitzpatrick ,Cella, Harper & Scinto
Ramsey Kenneth J.
LandOfFree
Method and apparatus of manufacturing electron source, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus of manufacturing electron source, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus of manufacturing electron source, and... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3342729