Method and apparatus of color mixing in a laser diode system

Coherent light generators – Particular active media – Insulating crystal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S009000, C372S031000, C348S750000

Reexamination Certificate

active

06606332

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to color mixing, in particular to color-image formation in an optical fiber laser system for use in display units, virtual displays, laser printing, laser TV, laser lithography, scanning, etc.
BACKGROUND OF THE INVENTION
For better understanding the principle of the invention, it would be advantageous to briefly describe some fundamentals of color mixing in an image-formation process. It is well known that perception of colors by a human eye is a complicated physiological process, which involves participation of an optical system of an eye and our brain. In other words, color is the external factor, a sensation existing only in our minds.
The remarkable repertoire of color effects seen by the eye, and interpreted by the brain, is our response to certain wavelengths of electromagnetic energy that makes up the visible spectrum of light. While we are able to measure quite accurately the wavelengths of light, our response to those wavelengths is affected by a whole multitude of factors that are beyond the scope of our invention. What is important to note is that, when we observe a non-self-luminescent object, i.e., an object illuminated by an external light source, the color perception of an eye from the light reflected from this object will depend essentially only on the spectral composition of the light that illuminates this object. Thus, a color is a property of spectral characteristics of light radiation common for the entire radiation spectrum, irrespective of visible or invisible. Generally speaking, light can be expressed as a combination of three interconnected parameters, i.e., by colors of three-color components, which are known as base colors. Each of these base colors can be the one that cannot be reproduced by mixing two others. There are a great variety of three basic colors that can reproduce the entire range of the color spectrum. Among those, three basic colors, i.e., red (R), green (G), and blue (B) form the most popular system known as an RGB system. By mixing the RGB colors we can produce practically any color shade of a visible color. The principle of RGB color mixing system find wide practical application in color TV, flat panel displays, color printing, etc.
There are known various color definition and classification systems. These systems define various colors and standardize them. In 1931, the International Commission on Illumination has standardized the following wavelengths for the RGB color mixing system: 700 nm for R, 546.1 for G, and 435.8 for B. Therefore development of new effective color mixing systems still remains an actual problem of the technology.
It is important to notice that, in the aforementioned standards, unit quantities of basic colors are selected so that a ratio of their energetic brightnesses is equal to a predetermined value, i.e., 72.1:1.4:1.0. This ratio, however, will be changed, if we chose, e.g., 653 nm for red, 530 nm for green, and 458 nm for blue.
Heretofore color-mixing systems with electronic control have been known. One of the latest developments in this field is a color image formation system described in U.S. Pat. No. 5,832,155 issued in 1998 to Rasch, et al. This invention concerns an integrated-optical junction splitter, in particular for applications in the wavelength range of visible light, which ensures a spatial and wideband combination of light in a wavelength spectrum &Dgr;&lgr; greater than 75 nm (value given applies to short-wave visible light). The system uses a single white light source or several light sources with a wide wavelength distance. In the case of a usable wavelength range comprising the entire spectrum of visible light, the junction splitter is a white light junction splitter. The aforementioned junction splitter consists of at least three channel waveguides, at least one of which must be a single-mode integrated-optical wideband channel waveguide (SOWCW). Two channel waveguides, with each having a respective input, are combined into a common SOWCW at their outputs in a coupling point, which common SOWCW features a common light output at its end. This wideband junction splitter is used as a wavelength-selective or wavelength-independent switch or modulator, in interferometric and photometric devices, sensors, and microsystem-technical solutions.
The aforementioned U.S. Pat. No. 5,832,155 describes only passive optical waveguide splitting and mixing of various wavelengths in a solid-state waveguide embedded in a solid-state material, such as LiNbO
3
. No electronic control is mentioned.
The system described in U.S. Pat. No. 5,832,155 has the following disadvantages. The white light junction splitters used in the system are optically and electrically inefficient because only few microwatts of light energy (less than 1% of the entire light energy emitted from the source) can be coupled from the white source. This inefficiency generates heat-removal problems, since the unused energy is converted into heat inside the device. For the same reason, electrical consumption of the system of the aforementioned patent is not suitable for portable devices since a high-capacity power source is needed.
Furthermore, embedding of titanium waveguides into the matrix of TiNbO
3
, as well as processing of electrodes used in the aforementioned patent, are expensive and complex processes that include photolithography and other complicated operations.
The only light source for all spectral (wavelength) components of the system is a white light source that must be always ON for operation of the system. This means that when modulation signals, i.e., high-voltage pulse signals U
1
, U
2
, U
3
, are sent to the electrodes for adjusting output light powers of individual waveguides, the process consists in “closing” unnecessary waveband portions while passing to the output the selected portions. This means that a major part of light energy is lost, and the system operates with low efficiency.
U.S. Pat. No. 5,802,222 issued in 1998 to the same applicants as U.S. Pat. No. 5,832,155 discloses a color image generation system for the reproduction of real or virtual, two-dimensional or three-dimensional, color, or monochrome image, in particular for television, video, or printing applications. Integrated-optical structures are used on a mount, in particular a substrate. An image is generated by deflecting color light beams generated into a viewing space, which deflection is effected in synchronism with color setting and intensity- or amplitude modulation of the light. The patent does not describe but only shows the electronic control assembly and describes in more detail the color image generation system that may be integrated on a mount either monolithically or in hybrid fashion. The color generation system may be implemented as an encased module.
Similar to U.S. Pat. No. 5,832,155, the system of U.S. Pat. No. 5,802,222 is based on adjusting the light intensity signals of at least two wavelengths which are to be mixed so that the final light intensity signal ratio on the output of the color mixer is obtained in accordance with the value required for a specific color. To achieve this purpose, the inventors use various control means such as amplitude attenuators, amplitude modulators and modulators of other types, pulse duration adjusters, etc. Although the description of the electronic control unit is essential for understanding the operation of the system, no disclosure of electronic control is contained in the description. Nevertheless, it can be assumed that for obtaining a great variety of color shades, such an electronic system, would be very complicated and expensive, since it is based on amplitude modulation of component light power signals prior to their mixing.
Known are various systems for electronic control of intensity of light emitted from a laser diode. Thus, U.S. Pat. No. 5,715,021 issued to Gibeau at al. describes a method and apparatus for a multi-application, laser-array-based image system, which utilizes three linear laser arrays. Each linear array generates m

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus of color mixing in a laser diode system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus of color mixing in a laser diode system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus of color mixing in a laser diode system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3100059

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.