Method and apparatus for water management of a fuel cell system

Chemistry: electrical current producing apparatus – product – and – Having magnetic field feature

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S006000, C429S006000, C429S006000

Reexamination Certificate

active

06824900

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to the field of direct oxidation fuel cells for producing electrical energy by electrochemical oxidation/reduction of an organic fuel, and in particular to a direct oxidation fuel cell with integrated water management.
2. The Prior Art
Fuel cell technologies present opportunities for the commercial development of long-lasting power sources for portable power and electronics applications. With the trend toward greater portability of a wide array of consumer electronics, some fuel cell technologies offer promising alternative power sources to meet the increased demand for portable power. Fuel cells can potentially replace or favorably compete with the various types of high density batteries presently used in consumer electronics, such as nickel metal-hydride and lithium ion battery systems, as well as relatively inexpensive alkaline batteries. These types of batteries are less than satisfactory power sources for such consumer electronics as laptop computers and cellular phones either due to their low power density, short cycle life, rechargability or cost. In addition, all these types of batteries present environmental safety concerns and costs for proper disposal.
Fuel cell systems are electricity-generating devices that convert chemical energy into useable electrical energy via a simple electrochemical reaction involving a fuel reactant, such as natural gas, methanol, ethanol, or hydrogen, and an oxidizing agent, typically ambient air or oxygen. Fuel cell systems may be divided into “reformer-based” systems, i.e., those in which the fuel is processed in some fashion before it is introduced into the cell, or “direct oxidation” systems, i.e., those in which the fuel is fed directly into the cell without internal processing. Most currently available stationary fuel cells are reformer-based fuel cells. However, fuel processing requirements for such cells limits the applicability of those cells to relatively large systems.
Referring to
FIG. 1
, a conventional direct oxidation fuel cell
1
, wherein the fuel reactant
3
is fed directly into the fuel cell
1
without internal modification or oxidation, is typically constructed of an anode diffusion layer
5
, a cathode diffusion layer
7
, and an electrolyte
9
, such as a protonically conductive electronically non-conductive membrane electrolyte (“PCM”), that is disposed between the anode and cathode diffusion layers. Fuel reactant is introduced into the fuel cell anode and is presented to a catalytic layer
11
intimately in contact with the anode face of the PCM. The anode catalyst layer separates hydrogen from the fuel reactant into protons and electrons as a result of oxidation. Upon the completion of a circuit which electrically connects the anode and cathode of the fuel cell, protons generated by the anodic catalytic reaction pass through the membrane electrolyte to the cathode of fuel cell. Electrons generated by anodic oxidation of fuel molecules cannot pass through the membrane electrolyte, and seek a path through the load which is being powered. The electrons flow away from the anode catalyst, through the anode diffusion layer, and are collected by a current collector
10
, pass through a load (not shown), through a current collector
12
, through the cathode diffusion layer and to the cathode catalyst layer
13
where the electrons combine with protons and oxygen to form water.
As long as constant supplies of fuel reactant and an oxidizing agent are available to the fuel cell, it can generate electrical energy continuously and maintain a desired power output. Hence, fuel cells can potentially run laptop computers and mobile phones for several days rather than several hours, while reducing or eliminating the hazards and disposal costs associated with high density and alkaline batteries. A further benefit is that a fuel cell runs cleanly producing water and carbon dioxide as by-products of the oxidation/reduction of the fuel reactant. The challenge is to develop fuel cell technology and to engineer direct fuel cell systems to meet the form and operation requirements of small-scale or “micro” fuel cells for portable electronics applications.
Direct methanol fuel cell (“DMFC”) systems are often multi-cell “stacks” including a number of single fuel cells joined to form a cell stack to increase the voltage potential to meet specific electrical power requirements. The feasibility of using DMFC systems as alternative power sources for portable electronics applications will depend upon the reduction of the size of the overall system to meet demanding form factors, while satisfying the necessary power requirements for electrical power applications.
In addition, DMFC systems useful for consumer electronics applications will require development and design engineering that will enable methanol fuel cells to self-regulate and passively generate electrical power under relevant operating conditions, including ambient air temperature and humidity with a minimum of active humidity or temperature regulation. Such operating conditions may further require the reduction or elimination of auxiliary equipment and external moving parts typically associated with present DMFC systems, such as external fins for heat dissipation, fans for cooling and external flow pumps for supplying pressurized gas reactants and water for sufficient membrane humidification. In addition, the volume of peripheral mechanisms or systems, such as pumps and reservoirs used to store and supply methanol fuel and gas separators used to remove gases from liquid fuel cell effluents, will need to be reduced or eliminated in DMFC systems for portable power and consumer electronics applications.
At present, prior art DMFC systems typically operate in two basic configurations, a flow-through configuration and a recirculation configuration, as disclosed, for example in U.S. Pat. Nos. 5,992,008, 5,945,231, 5,795,496, 5,773,162, 5,599,638, 5,573,866 and 4,420,544. The flow-through configuration directly feeds methanol as a vapor or a stream of either neat methanol or an aqueous solution of methanol and water into the anode electrode of the fuel cell. Anodic oxidation by-products, specifically carbon dioxide, as well as fuel impurities and unreacted methanol fuel solution are removed from the fuel cell to the ambient environment. The flow-through configuration has the disadvantages of wasting unused fuel, and making it difficult to manage effluent by-products. In addition, the flow-through configuration presents problems with respect to handling the anode effluent discharged from the fuel cell. Peripheral mechanisms or systems are required with the flow-through configuration of DMFC systems to remove and dispose of the anode effluent discharged from the fuel cell. Such mechanism or systems would render flow-through DMFC systems impractical for use in portable electronics applications.
The recirculation configuration of DMFC systems, however, has the advantages of recirculating the anode effluent back into the anode electrode, which conserves unused methanol fuel and contains the anode effluent generated by the electrochemical oxidation/reduction processes.
Prior art DMFC systems with recirculation configurations address the problems of handling anode effluent, conserving unused methanol fuel and providing a means of managing by-products of the reaction. Such features are highly advantageous for use of DMFC systems in portable power supplies and portable consumer electronics. However, recirculation configurations of prior art DMFC systems must incorporate auxiliary or external peripheral equipment in the recirculation loops that occupy volume and add complexity to DMFC systems due to their use of electrical power, thus limiting the net power output of the DMFC system.
In a DMFC, it is necessary to provide sufficient quantities of fuel (a mixture of water and methanol) to the catalyzed anode face of the PCM, and oxygen to the catalyzed cathode face of the PCM. Failure to allow sufficient qua

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for water management of a fuel cell system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for water management of a fuel cell system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for water management of a fuel cell system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3312824

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.