Method and apparatus for warming and storage of cold fluids

Refrigeration – Storage of solidified or liquified gas – Underground or underwater storage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06739140

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a) the warming of cold fluids, such as liquefied natural gas (LNG), using a heat exchanger and b) the storage of the resulting fluid in an uncompensated salt cavern. In an alternative embodiment, a conventional vaporizer system can also be used to warm a cold fluid prior to storage in an uncompensated salt cavern.
Much of the natural gas used in the United States is produced along the Gulf Coast. There is an extensive pipeline network both offshore and onshore that transports this natural gas from the wellhead to market. In other parts of the world, there is also natural gas production, but sometimes there is no pipeline network to transport the gas to market. In the industry, this sort of natural gas is often referred to as “stranded” because there is no ready market or pipeline connection. As a result, this stranded gas that is produced concurrently with crude oil is often burned at a flare. This is sometimes referred to as being “flared off”.
Different business concepts have been developed to more effectively utilize stranded gas. One such concept is construction of a petrochemical plant near the source of natural gas to use the gas as a feedstock for the plant. Several ammonia and urea plants have been constructed around the world for this purpose.
Another approach is to liquefy the natural gas at or near the source and to transport the LNG via ship to a receiving terminal. At the LNG receiving facility, the LNG is offloaded from the transport ship and stored in cryogenic tanks located onshore. At some point, the LNG is transferred from the cryogenic storage tanks to a conventional vaporizer system and gasified. The gas is then sent to market via a pipeline. At the start of this process, liquefaction may consume 9-10% of the LNG by volume. At the end of the process, the gasification may consume an additional 2-3% of the LNG by volume. To the best of Applicants knowledge, none of the existing conventional LNG facilities that use vaporizer systems thereafter store the resulting gas in salt caverns. Rather, the conventional LNG facilities with vaporizers transfer all of the resulting gas to a pipeline for transmission to market.
Currently there are more than 100 LNG transport ships in service worldwide and more are on order. LNG transport ships are specifically designed to transport the LNG as a cryogenic liquid at or below −250° F. and near or slightly above atmospheric pressure. Further, the ships run on the LNG and are counter-flooded to maintain a constant draft of about 40 feet. The LNG ships currently in service vary in size and capacity, but some hold about 3 billion cubic feet of gas (Bcf) (approx. 840,000 barrels) or more. Some of the ships of the future may have even greater capacity and as much as 5 Bcf. One of the reasons LNG is transported as a liquid is because it takes less space.
There are a number of LNG facilities around the world. In the U.S., two LNG receiving facilities are currently operational (one located in Everett, Mass. and one located south of Lake Charles, La.) and two are being refurbished (one located in Cove Point, Md. and one located at Elba Island, Ga.). Construction of additional LNG facilities in the U.S. has been announced by several different concerns.
The LNG receiving facilities in the U.S. typically include offloading pumps and equipment, cryogenic storage tanks and a conventional vaporizer system to convert the LNG into a gas. The gas may be odorized using conventional equipment before it is transmitted to market via a pipeline. LNG terminals are typically designed for peak shaving or as a base load facility. Base load LNG vaporization is the term applied to a system that requires almost constant vaporization of LNG for the basic load rather than periodic vaporization for seasonal or peak incremental requirements for a natural gas distribution system. At a typical base load LNG facility, a LNG ship will arrive every 3-5 days to offload the LNG. The LNG is pumped from the ship to the LNG storage tank(s) as a liquid (approx.−250° F.) and stored as a liquid at low-pressure (about one atmosphere). It typically may take 12 hours or more to pump the LNG from the ship to the cryogenic storage tanks onshore.
LNG transport ships may cost more than $100,000,000 to build. It is therefore expedient to offload the LNG as quickly as possible so the ship can return to sea and pick up another load. A typical U.S. LNG base load facility will have three or four cryogenic storage tanks with capacities that vary, but are in the range of 250,000-400,000 barrels each. Many of the current LNG ships have a capacity of approximately 840,000 barrels. It therefore will take several cryogenic tanks to hold the entire cargo from one LNG ship. These tanks are not available to receive LNG from another ship until they are again mostly emptied.
Conventional base load LNG terminals are continuously vaporizing the LNG from the cryogenic tanks and pumping it into a pipeline for transport to market. So, during the interval between ships (3-5 days), the facility converts the LNG to gas (referred to as regasification, gasification or vaporization) which empties the cryogenic tanks to make room for the next shipment. The LNG receiving and gasification terminal may produce in excess of a billion cubic feet of gas per day (BCFD). In summary, transport ships may arrive every few days, but vaporization of the LNG at a base load facility is generally continuous. Conventional vaporizer systems, well known to those skilled in the art, are used to warm and convert the LNG to usable gas. The LNG is warmed from approximately −250° F. in the vaporizer system and converted from liquid phase to usable gas before it can be transferred to a pipeline. Unfortunately, some of the gas is used as a heat source in the vaporization process, or if ambient temperature fluids are used, very large heat exchangers are required. There is a need for a more economical way to convert the LNG from a cold liquid to usable gas.
LNG cryogenic storage tanks are expensive to build and maintain. Further, the cryogenic tanks are on the surface and present a tempting terrorist target. There is therefore a need for a new way to receive and store LNG for both base load and peak shaving facilities. Specifically, there is a need to develop a new methodology that eliminates the need for the expensive cryogenic storage tanks. More importantly, there is a need for a more secure way to store huge amounts of flammable materials.
There are many different types of salt formations around the world. Some, but not all of these salt formations are suitable for cavern storage of hydrocarbons. For example, “domal” type salt is usually suitable for cavern storage. In the U.S., there are more than 300 known salt domes, many of which are located in offshore territorial waters. Salt domes are also known to exist in other areas of the world including Mexico, Northeast Brazil and Europe. Salt domes are solid formations of salt that may have a core temperature of 90° F. or more. A well can be drilled into the salt dome and fresh water can be injected through the well into the salt to create a cavern. Salt cavern storage of hydrocarbons is a proven technique that is well established in the oil and gas industry. Salt caverns are capable of storing large quantities of fluid. Salt caverns have high sendout capacity and most important, they are very, very secure. For example, the U.S. Strategic Petroleum Reserve now stores approximately 600,000,000 barrels of crude oil in salt caverns in Louisiana and Texas, i.e., at Bryan Mound, Tex.
When fresh water is injected into domal salt, it dissolves thus creating brine, which is returned to the surface. The more fresh water that is injected into the salt dome, the larger the cavern becomes. The tops of many salt domes are often found at depths of less than 1500 feet. A salt cavern is an elongate chamber that may be up to 1,500 feet in length and have a capacity that varies between 3-15,000,000 barrels. The largest is about 40

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for warming and storage of cold fluids does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for warming and storage of cold fluids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for warming and storage of cold fluids will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3216046

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.