Multiplex communications – Diagnostic testing
Reexamination Certificate
2007-02-13
2007-02-13
Shah, Chirag G. (Department: 2616)
Multiplex communications
Diagnostic testing
C370S230100, C370S231000, C370S235000, C707S793000, C707S793000
Reexamination Certificate
active
10114655
ABSTRACT:
A system and method are provided for monitoring dynamic data from distributed sources through the use of histograms. In the method, an array sketch of the digital signal is determined, a robust histogram is constructed from the array sketch, and an output histogram is constructed from the array sketch and the robust histogram via a hybrid histogram. Dyadic intervals of a representation of the array sketch are used in constructing the robust histogram.
REFERENCES:
patent: 6718346 (2004-04-01), Brown et al.
patent: 6760724 (2004-07-01), Chakrabarti et al.
patent: 2006/0007858 (2006-01-01), Fingerhut et al.
“Self-tuning Histograms: Building Histograms Without Looking at Data,” by A. Aboulnaga et al,Proceedings of the ACM SIGMOD Conference, 1999, pp. 181-192.
“Tracking Join and Self-join Sizes in Limited Storage,” by N. Alon et al,ACM Symposium on Principles of Database Systems(PODS), 1999, pp. 10-20.
“The Space Complexity of Approximating the Frequency Moments,” by N. Alon et al,ACM Symp. on Theory of Computing(STOC), 1996, pp. 20-29.
“Evaluating Top-k Selection Queries,” by S. Chaudhuri et al,Proceedings of VLDB Conference, 1999, pp. 399-410.
“An Introduction to Wavelets,” by C. K. Chui, Wavelet Analysis and its Applications, vol. 1, Academic Press, 1992.
“Hancock: A Language for Extracting Signatures from Data Streams,” by Corinna Cortes et al,Proceeding of the Sixth International Conference on Knowledge Discovery and Data Mining, 2000, pp. 9-17.
“Mining High-Speed Data Streams,” by Pedro Domingos et al,Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining, 2000, pp. 71-80.
“Ideal Spatial Adaptation by Wavelet Shrinkage,” by David L. Donoho et al,Biometrika, 1994, pp. 425-455.
“Computing Iceberg Queries Efficiently,” by Min Fang et al,Proceedings of VLDB Conference, 1998, pp. 299-310.
“Multi-dimensional Selectivity Estimation Using Compressed Histogram Information,” by Ju-Hong Lee,Proceedings of the ACM SIGMOD Conference, 1999, pp. 205-214.
“An Approximate L sup 1 -Difference Algorithm for Massive Data Streams,” by J. Feigenbaum et al,Proceedings of IEEE Symposium on Foundations of Computer Science, 1999, pp. 501-511.
“Testing and Spot-Checking of Data Streams,” by J. Feigenbaum et al, SODA, 2000, pp. 165-174.
“Mining Very Large Databases,” by V. Ganti et al,IEEE Computer32(8), 1999, pp. 38-45.
“Space-Efficient Online Computation of Quantile Summaries,” by M. Greenwald et al,Proceedings of the ACM SIGMOD Conference, 2001, pp. 58-66.
“Synopsis Data Structures for Massive Data Sets,” by P. Gibbons et al,SODA, 1999, pp. 5909-5910.
“New Sampling-Based Summary Statistics for Improving Approximate Query Answers,” by P. B. Gibbons et al,Proceedings of the ACM SIGMOD Conference, 1998, pp. 331-342.
“Fast Incremental Maintenance of Approximate Histograms,” by P. B. Gibbons et al,Proceedings of VLDB, 1997, pp. 466-475.
“Clustering Data Streams,” by S. Guha et al, Proceedings of the Annual Symposium on Foundations of Computer Science, IEEE, 2000, pp. 359-366.
“Stable Distributions, Pseudorandom Generators, Embeddings and Data Stream Computation,” by Piotr Indyk,41stSymposium on Foundations of Computer Science, 2000, pp. 189-197.
Computing on Data Streams, by Monika R. Henzinger et al,DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 50, 1999, pp. 107-118.
“Random Sampling Techniques for Space Efficient Online Computation of Order Statistics of Large Datasets,” by G. Manku et al,Proceeding of ACM SIGMOD Conference, 1999, pp. 251-262.
“Histogram-Based Estimation Techniques in Database Systems,” by V. Poosala, Ph. D. dissertation, University of Wisconsin-Madison, 1997, pp. i-xvii and pp. 1-238.
“Approximate Query Processing Using Wavelets,” by K. Chakrabarti et al,Proceedings of VLDB, 2000, pp. 111-122.
“Wavelet-Based Histograms for Selectivity Estimation,” by Y. Matias,Proceedings of the ACM SIGMOD Conference, 1998, pp. 448-459.
“Dynamic Maintenance of Wavelet-Based Histograms,” by Y. Matias,Proceedings of the 26thVLDB Conference, 2000, pp. 101-110.
“On Computing Correlated Aggregates Over Contunual Data Streams,” by J Gehrke et al,Proceedings of the ACM SIGMOD Conference, 2001, pp. 13-24.
“Approximate Computation of Multidimensional Aggregates of Sparse Data Using Wavelets,” by J. Vitter et al,Proceedings of ACM SIGMOD Conference, 1999, pp. 193-204.
“Data Cube Approximation and Histograms via Wavelets,”CIKM, 1998, pp. 96-104.
“Stanford Stream Data Manager,” http://www-db.stanford.edu/stream/ , 5 pages.
“Essential Wavelets for Statistical Applications and Data Analysis,” by R. T. Ogden, Birhauser, 1997.
“The Theory of Error-Correcting Codes,” by F. J. MacWilliams and N. J. A. Sloane, North Holland Mathematical Library, vol. 16, North Holland, New York, 1977.
Gilbert Anna C.
Guha Sudipto
Indyk Piotr
Kotidis Ioannis
Muthukrishnan Shanmugavelayutham
AT&T Corp.
Shah Chirag G.
LandOfFree
Method and apparatus for using histograms to produce data... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for using histograms to produce data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for using histograms to produce data... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3887875