Interactive video distribution systems – Video distribution system components – Headend
Reexamination Certificate
1998-01-01
2002-12-10
Grant, Chris (Department: 2611)
Interactive video distribution systems
Video distribution system components
Headend
C725S151000
Reexamination Certificate
active
06493878
ABSTRACT:
TABLE OF CONTENT
The titles in the present Table of Content are included to provide a simplified road map for the reader. These titles are not intended to divide the specification into separate inventions or independent subject matters.
TABLE OF CONTENT
CROSS REFERENCE TO RELATED APPLICATIONS
BACKGROUND OF THE INVENTION
1. Technical Field
2. Background Information
I. Teleconferencing
II. Video Cameras
III. LCD Monitors
IV. Paperless Network
V. Program Delivery System with Digital Compression and Encoding/Decoding Scheme
VI. Multimedia and Video On Demand Systems
VII. Medical Applications
Ultra Sound Imaging Applications
Mechanical Heart, Body Fluid and Drug Infusion Pump
Encapsulation of Drugs and Biological Materials
Prosthetic Eye
SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DESCRIPTION OF THE PREFERRED EMBODIMENT
I. Teleconferencing
II. Video Cameras
III. LCD Monitors
IV. Paperless Network
V. Program Delivery System with Digital Compression and Encoding/Decoding Scheme
Processing of Video Signals
Processing of Audio and Data signals
VAD Mapping System
Program Insertion Systems
Other Applications
VI. Multimedia and Video On Demand Systems
VII. Medical Applications
Imaging Applications
Mechanical Heart, Body Fluid and Drug Infusion Pump
Encapsulation of Drugs and Biological Materials
Prosthetic Eye
VII. Other Applications
Recording Media
Data Transmission System
IX. Audio and Video Searching
CLAIMS
ABSTRACT
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention generally relates to the field of imaging, and particularly to a video camera. The invention further relates to a method and a device for capturing video, audio and data signals.
2. Background Information
I. Teleconferencing
Conventional television and cable television (CATV) broadcasting are generally carried out on a real-time basis. For instance, it takes the same length of time to broadcast or transmit a TV program than it does to receive and display the program. Such broadcasting method has proven to be less than completely desirable due to limited TV bandwidth and channels allocation.
Channel availability has been a crucial limitation in the broadcasting industry. Channel allocation has been very valuable and expensive. It has precluded several interested individuals, small businesses, consumers, and local community chapters from accessing the TV broadcasting networks, in order to express personal views or to advertise.
TV broadcasting has become the single most important and popular means for accessing and educating large numbers of citizens. Therefore, TV broadcasting has a direct effect on the right to free speech and expression as guaranteed by several constitutions around the world, including that of the U.S.A.
Research and development has been carried out in the TV and video broadcasting field. The United States Department of Defense has sponsored several projects relating to the field of the present invention. The following Defense Technical Information Center (DTIC) technical reports exemplify some of these projects:
1. AD-A210 974, entitled “Robot Vehicle Video Image Compression.”
AD-A191 577, entitled “Narrative Compression Coding for a Channel with Errors.”
3. AD-A194 681, entitled “SNAP/DDN Interface for Information Exchange.”
4. AD-A174 316, entitled “A Packet Communication Network Synthesis and Analysis System.”
5. AD-A206 999, entitled “Geometric Methods with Application to Robust Detection and Estimation.”
6. AD-A207 814, entitled “Random Transform Analysis of a Probabilistic Method for Image Generation.”
7. AD-A188 293, entitled “A Video-Rate CCD Two-Dimensional Cosine Transform Processor.”
8. AD-A198 390, entitled “Navy Satellite Communications in the Hellenic Environment.”
9. AD-A206 140, entitled “Investigation of Optional Compression Techniques for Dither Coding.”
The following patents are incorporated by reference and teach various video broadcasting and teleconferencing techniques:
1. U.S. Pat. No. 3,693,090 to Gabriel, entitled “Wired Broadcasting Systems”, and assigned to Communications Patents Limited.
2. U.S. Pat. No. 3,733,430 to Thompson et al., entitled “Channel Monitoring System”, and assigned to RCA Corporation.
3. U.S. Pat. No. 4,215,369 to Ijima, entitled “Digital Transmission”, and assigned to Nippon Electric of Japan.
4. U.S. Pat. No. 4,300,161 to Haskell, entitled “Time Compression Multiplexing of Video Signals”, and assigned to Bell Telephone Laboratories.
5. U.S. Pat. No. 4,650,929 to Boerger et al., entitled “Communication System For Videoconferencing”, and assigned to Heinrich Hertz Institute of Germany.
6. U.S. Pat. No. 4,903,126 to Kassatly, entitled “Method and Apparatus for TV Broadcasting”.
U.S. Pat. No. 4,975,771 to Kassatly, also entitled “Method and Apparatus for TV Broadcasting”.
8. U.S. Pat. No. 5,157,491 to Kassatly, entitled “Method and Apparatus for Video Broadcasting and Teleconferencing”.
9. U.S. Pat. No. 4,410,980 by Takasaki, entitled “Time Division Multiplexing System”, and assigned to Hitachi Limited of Japan.
10. U.S. Pat. No. 4,533,936 by Tiemann, entitled “System for Encoding and Decoding Video Signals”, and assigned to General Electric Co.
11. U.S. Pat. No. 4,593,318 by Eng, entitled “Technique for the Time Compression Multiplexing of Three Television Signals”, and assigned to AT&T Bell Laboratories.
12. U.S. Pat. No. 4,646,135 by Eichelberger, entitled “System for Allowing Two Television Programs Simultaneously to Use the Normal Bandwidth for One Program by Chrominance Time Compression and Luminance Bandwidth Reduction”, and assigned to General Electric Co.
13. U.S. Pat. No. 4,442,452 to Powell, entitled “Image Processing Method Using a Block Overlap Transformation Procedure”, and assigned to Eastman Kodak.
14. U.S. Pat. No. 5,239,540 to Rovira et al.
15. PCT patent application WO 93/10606 to Scientific Atlanta.
16. U.S. Pat. No. 5,337,199 to Arai et al.
17. U.S. Pat. No. 5,027,400 to Baji et al.
18. U.S. Pat. No. 5,195,086 to Baumgartner et al.
19. U.S. Pat. No. 5,187,589 to Kono et al.
20. U.S. Pat. No. 5,182,642 to Gerdorff et al.
21. U.S. Pat. No. 5,191,410 to McCalley et al.
The Boerger U.S. Pat. No. 4,650,929 is a representative publication of the state of the relevant art in the video teleconferencing field, and will now be described in more detail. The Boerger patent generally relates to a video-conferencing system which basically includes a central station
1
and a significantly limited number of subscribers stations 25. Boerger acknowledges the limitation of the patented system in column 3, lines 41-43, and column 7, lines 51-52, and states that it only accommodates a maximum of 12 subscribers. Furthermore, the main purpose of the central station appears to be that of “an intermediary or exchange between sources and sinks, i.e. transmitting and receiving signal points”. Column 3, lines 10-13. Therefore, the Boerger system, in general, seems to connect only a very limited number of specific subscribers; collects the video and audio signals from these subscribers in the central station; and sends the collected signals back to the subscribers. These signals are sent back to the subscribers in a non-compressed format, on a real time basis.
FIG. 4, and the corresponding description of the system in the specification, column 7, lines 15-18, lines 29-33 and lines 54-62; and column 9, lines 53-58, indicate that the incoming video source signals
41
are passed through an A/D converter 9 to a large picture storage
5
, and to a small picture storage 6. The video signals from the large and small picture storages 5 and 6 are then fed to multiplexers 17, 18, and therefrom, through a digital-to-analog converter 19 to the respective connecting line 36. Therefore, the video signals are converted back to analog signals prior to transmission to the participant subscribers, and as such the signals are said to be transmitted on a real-time basis, and are not compressed. Thus, there is no need to decompress the video signals at the participant subscribers' locations 25. Column 3, lines 24-27, confirms that if “picture storag
Grant Chris
Trexler, Bushnell Giangiorgi, Blackstone & Marr, Ltd.
LandOfFree
Method and apparatus for tv broadcasting and reception does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for tv broadcasting and reception, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for tv broadcasting and reception will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2917117