Method and apparatus for thin film deposition using an...

Chemistry: electrical and wave energy – Apparatus – Coating – forming or etching by sputtering

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S298060, C204S298120, C204S298230, C118S7230ER, C118S729000, C118S504000

Reexamination Certificate

active

06444103

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
This invention relates in general to the field of microelectronic device fabrication, and more particularly to a method and apparatus for thin film deposition using an active shutter in a physical-vapor deposition system.
BACKGROUND OF THE INVENTION
Shutters perform specialized functions in thin film processing, particularly in physical-vapor deposition (PVD) systems, by regulating a division of space within a processing chamber. Typically a first region of the divisible space includes a substrate support for supporting the substrate and in some applications, regulating the temperature of the substrate to be processed. A second region of the divisible space includes a process energy source such as a physical-vapor deposition (“PVD”) target electrode. Shutter activation temporarily divides a thin-film processing chamber into two separate regions of space by insertion of the shutter into the processing chamber between the substrate support and the target. Thus, a shutter blocks the line-of-sight view between the target and the substrate.
Shutters support a number of device processing functions including the plasma cleaning of substrates, the surface preparation of targets such as by target burn-in, or timing operations, such as end-pointing or terminating a deposition process involving plasma sputtering effects between the target and substrate. For example, to clean a substrate the shutter is grounded and bias voltage such as an RF bias is applied to the substrate. Similarly, to clean a target a bias voltage such as DC or RF bias is applied to the target. A shutter can help with the substrate and target cleaning operations by preventing cross-contamination between the target and the substrate during these operations. A shutter also helps to reduce process transients by stabilizing PVD plasma generated through target bias with the shutter closed and then opening the shutter to expose the substrate to the target and the sputtering flux initiated from the target.
Typical shutters have an extendible arm assembly that acts to move the shutter, usually a blocking plate, between an open position in which the substrate support is exposed to the target and a closed position in which the shutter intercedes between the substrate support and the target. For instance, an actuator may extend the shutter plate across the processing chamber, with the shutter moving in a plane parallel to the target and the substrate from one side of the process chamber so as to establish a closed position dividing the chamber space. Retraction of the shutter plate from the chamber into a shutter housing attached to the process chamber establishes an open position.
Use of a shutter improves thin film processing in a single chamber but does not address other difficulties associated with deposition of plural thin film layers of different materials. A single target electrode in a PVD processing chamber allows deposition of only the target's material on the substrate surface within that chamber. Thus, generally thin film processing requiring the sputter deposition of multiple layers of distinct materials onto a substrate involves processing in multiple chambers or vacuum chambers, comprising multiple process stations. Multi-chamber processing tends to increase processing costs with additional processing equipment such as additional chambers, wafer handling equipment for transferring a substrate from one chamber to the next, and extended processing time due to extra wafer handling steps. Also, the movement of a substrate from one chamber to the next often introduces impurities either due to the residual contaminants in the substrate handling hub or particles. For instance, freshly deposited material or particles may break off the edges of the substrate or the transfer equipment during substrate transfer and handling.
One potential solution to the problems related to the deposition of multiple thin film layers is to provide multiple target electrodes in a single vacuum processing chamber. However, single vacuum processing chambers with multiple target electrodes or multiple PVD stations may result in cross-contamination of targets and substrates by the material of the different targets, thereby affecting process reliability and repeatability.
Contamination within the surface of the chamber is another common problem associated with the use of multiple targets in a single deposition chamber. After a number of deposition runs, the deposition chamber often contains impurities that dislodge as particles to disrupt the deposition process. To address this difficulty, the deposition chamber is or the deposition shield typically serviced to remove impurities from the system. Such servicing or shield replacements would have to occur more often if multiple materials are used in a chamber. Frequent servicing disrupts processing flow due to the need for vacuum breaks, consuming valuable time and resources.
SUMMARY OF THE INVENTION
Therefore a need has arisen for a method and apparatus for thin film deposition of plural material layers on a substrate which deposits different materials in a single processing chamber.
A further need exists for a method and apparatus for thin film deposition of plural material layers on a substrate which supports deposition of plural materials in a single processing chamber while reducing the maintenance required to manage contaminants at or below a desired level.
A further needs exists for a method and apparatus for thin film deposition of plural material layers on a substrate which increases throughput and-decreases equipment cost, footprint and processing time.
In accordance with the present invention, a method and apparatus for thin film deposition using an active shutter is provided that substantially eliminates or reduces disadvantages and problems associated with previously developed thin film deposition equipment. A shutter target support couples to a shutter so that a target in the shutter target support moves into and out of the processing chamber in conjunction with the shutter. When the shutter is in a closed position, a target in the shutter target support is positioned facing the substrate for deposition of a material on a substrate. When the shutter is in an open position, the shutter target support is substantially removed from the processing chamber to allow deposition of another material on the substrate from a main target located in the processing chamber.
More specifically, in one embodiment a vacuum processing chamber housing has a main target support located in it that supports a target electrode comprised of a first material for deposition on a substrate. The vacuum processing chamber housing also has a substrate support that is generally opposed to the first target support with a direct line-of-sight view so that material of the first target deposits onto a substrate in the substrate support.
A shutter interfaces with the housing through a slot that allows movement of the shutter between a closed position and an open position. When the shutter is positioned in the closed position, the shutter enters through the slot to create a barrier or blockage between the first or main target support and the substrate support. When the shutter is positioned in the open position, the shutter exits the housing through the slot to allow material deposition from the first target onto the substrate.
A shutter target support is coupled to the shutter assembly such that when the shutter is in the closed position, a shutter target associated with the shutter target support substantially aligns with and faces the substrate support. The shutter target associated with shutter target support is comprised of a second PVD target material for deposition on the substrate. In one embodiment, the shutter target support retrofits a conventional shutter to enable conversion of the conventional shutter to support deposition of a second type of material in a single PVD vacuum processing chamber.
The shutter cooperates with the housing to create different regions of space de

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for thin film deposition using an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for thin film deposition using an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for thin film deposition using an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2839342

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.