Data processing: database and file management or data structures – Database design – Data structure types
Reexamination Certificate
2000-12-13
2004-08-10
Breene, John (Department: 2177)
Data processing: database and file management or data structures
Database design
Data structure types
C707S793000, C709S203000, C705S002000, C705S003000
Reexamination Certificate
active
06775670
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of information distribution systems. More specifically, it pertains to a device and method for the electronic management of data files, for instance within the medical and health education domains.
BACKGROUND OF THE INVENTION
The following paragraphs give definitions of terms relevant to this document:
Client-Server: Client-server computing implies that a single application is being jointly accomplished by two or more interdependent pieces of equipment, including software, hardware and interface. The client requests information and the server provides it, with each one assigned the portion of the job which is suitable to its capabilities. Client-server can be achieved in a local area network of personal computers and servers or by means of a link between a user system and a large host such as a mainframe. Typically, a client-server environment implies a many to one design, whereby multiple clients can make simultaneous requests of the server, allowing for server information sharing between clients. A crucial aspect of Internet Protocol (IP) based technology, such as the World Wide Web (WWW), is the fact that it is a client-server application.
Intranet: An intranet is any internal network (LAN or WAN) that supports Internet applications—primarily web (hypertext transfer protocol), but also other applications such as FTP (file transfer protocol). Intranets are used by many companies to deliver private corporate information to internal users.
Local vs. Wide Area Network: A local area network (LAN) is a private internal communication network that is confined to a small area, such as a single building or a small cluster of buildings. It is a general-purpose local network that can serve a variety of devices, and is generally owned, used, and operated by a single organization. A wide area network (WAN) is similar to a LAN in that it is also a communication network, but a WAN extends over a much broader area, interconnecting communication facilities in different parts of a country. A WAN may also be used as a public utility.
Open System: A system with the capability to cooperate with another system in the exchange of information and in the accomplishment of tasks, where the two systems may be implemented very differently. Every open system must conform to a minimal set of communication and protocol standards, as defined by the open-systems interconnection (OSI) model.
Standard Exchange Protocols: A protocol is the set of rules or conventions governing the way in which two entities cooperate to exchange data. An example of such a protocol is the Internet Protocol (IP), a library of routines called on by various network communications applications.
In the past few years, the worlds of information and technology have made important evolutions. We have progressed from a universal analogical support, usually on paper, towards a theoretically universal electronic support based on the multimedia as well as Internet Protocol (IP) based technology such as the World Wide Web (WWW), JAVA™ and ICQ™ (I Seek You) programs. The transmission of information has also made tremendous progress and is already, or will be soon, practically instantaneous no matter the form of information: text, data, sound, fixed or animated image.
The search for information is becoming more and more similar to the concept of navigation among diverse sources of information and even within documents themselves. The concept of navigation itself implies the need for user accessible tools as well as some sort of structured organization.
Narrowing the focus, this major revolution of information systems brings about profound changes in the relations between academic and hospital domains, in particular everything which deals with medical archives and databases as well as the ability to consult aggregates of these in a transparent way and to share in real or delayed time the information obtained. The number of information sources is multiplying and the communication networks are proliferating: more and more documentation is available in digital form and the information highway is rapidly expanding. Concerning medical archives and databases, questions arise as to their role of maintaining or distributing information. If their roles of acquiring, cataloging and maintaining information are to continue, they will have to give access to the available information on new multimedia supports as well as serve as access points to the information within enlarged networks (e.g. the Healthcare Inforoute™ network). These changes will add to the complexity of their management, all the while enlarging their traditional mandate.
In other words, the medical archives and databases of the future will not only be locally archived medical-legal clinical documents, but also high-performance data banks of primary importance to the practice of medicine and health care everywhere within our network, all the while constituting a living core dedicated to clinical and scientific research and development.
The above described evolution of the medical file and database system requires that the following two objectives be achieved:
effective navigation across multiple and diverse sources of information, both local and distant, performed in a transparent way with respect to the end user;
efficient file management allowing universal research, the treatment of contained information, and the sharing of information between system users.
Currently, in order to store medical archives and databases, passive data accumulation for each medical facility takes place within a local network. Unfortunately, the costs of stocking information and storing files in a local network are quite high and the space available is limited. There is also a well-established historical insufficiency concerning the ability of the local medical archive file networks to respond to the documentary and informational needs of the emergency doctor or of the consultant. The medical facilities do not have access to a complete ensemble of information sources, thus complicating emergency medical procedures and diagnoses all the while hampering the facility's ability to give patients the most appropriate treatment.
Although the solution of combining the multiple independent local networks into a single integrated health network seems rather obvious, the implementation of such a concept presents certain problems concerning the manner in which medical data is currently recorded and treated, at both text and image levels. First of all, each separate medical facility may count up to hundreds of thousands of active files, some archived locally, others externally, either in an integrated or a refined form. Second of all the file organization may be different at each facility, a huge obstacle to the merging of all files into a system which supports a common format file organization. There is also the problem of available space when considering the large volume of information contained in each file and the fact that the life of a particular medical file may approach up to twenty-five years in length. Thus volume and merging problems lead to the conclusion that it is currently almost impossible to combine and digitize the whole of all local medical records from all local networks.
Even if the merging and digitizing were possible, there is a question as to whether this would be desired. The data recorded in the medical files does not all have the same informational and discriminatory value in the long run. In fact, the data falls into three categories: data with strict medical-legal value, data with short term clinical value and data with historical value or a biological signature. Unfortunately, the first category, data with strict medical-legal value, makes up the majority of data recorded in the file while it represents the least valuable information for emergency doctors and consultants. On the other hand, the most valuable information for emergency procedures and diagnoses, the third category, makes up a very small portion of data recorded
Breene John
Lewis Cheryl
RatnerPrestia
LandOfFree
Method and apparatus for the management of data files does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for the management of data files, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for the management of data files will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3351321