Gas separation: processes – Liquid contacting – And deflection
Reexamination Certificate
2002-01-22
2004-03-02
Smith, Duane S. (Department: 1724)
Gas separation: processes
Liquid contacting
And deflection
C095S174000, C095S231000, C096S234000, C096S323000, C261SDIG003
Reexamination Certificate
active
06699308
ABSTRACT:
TECHNICAL FIELD
The present invention is concerned with a method and apparatus for the removal of water from natural gas.
BACKGROUND OF THE INVENTION
Natural gas as extracted from reservoirs contains water vapour. The concentration of the water vapour depends on the temperature and pressure of the gas at the extraction point. During the processing of the gas, particularly if it is treated to remove acid gas components such as carbon dioxide, CO
2
, and hydrogen sulphide, H
2
S, it may come into contact with aqueous solvents. This means that the gas may pick up further water vapour. When the gas is contacted with an aqueous solvent, it will become saturated with water vapour at the prevailing temperature and pressure. Before the gas is exported from the production facility the water vapour concentration in the gas must be reduced to very low levels. A typical specification may be 0.2 parts per million by volume (ppm v/v) of water in the gas. This is well below the concentrations which will normally be in the gas as extracted and well below the value after processing to remove CO
2
and/or H
2
S. The gas, therefore has to be dried before it can be compressed for export
Currently, the processes are generally used to dry a gas. These are based on absorption or adsorption respectively. In the adsorption, the gas is contacted with a porous solid material. The water vapour adsorbs onto the surface of the solid. The adsorbent is usually a silicious material, typically a mixture of aluminium and silica oxides known as molecular sieves. In absorption the gas is contacted with a chemical reagent which removes the water. The present application is concerned with absorption drying-dehydration processes.
In conventional drying processes alcohols, usually the glycols, monoethylene glycol, MEG, or triethylene glycol, TEG, are contacted with gas in a countercurrent tower. The gas is normally saturated with water vapour at the inlet conditions, temperature and pressure. The saturation concentration increases with increasing temperature and decreasing pressure. In a typical set of conditions, 80° C. and 70B (7×10
6
Pa) pressure, the saturation concentration is 8×10
−3
kg/mmscm of gas. The concentration of water in the outlet gas will vary slightly with conditions on pipe line specifications but is typically of the order of 6.4×10
−5
kg/mmscm of gas. This corresponds to a water low point at 70 Bg of −7° C., well below the hydrate formation point.
In order to assess the absorption duty between these low concentrations, the thermodynamic equilibrium data—concentration of water in the gas, y*, and concentration of water in the liquid phase, x- is required. Note:
y*
p
=ƒ(
x
)
p
(1)
i.e., the function ƒ is dependent on the pressure.
The relevant data shows that the separation can be achieved in one theoretical stage, i.e. if equilibrium were achieved in the contacting (mixing) process, then one contact between the gas and liquid should give the required duty of water removal from the gas.
However, in conventional countercurrent tower units, 4 actual stages are normally specified. Stage efficiencies greater than 50% are simply not achieved.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide a method and apparatus which enables water vapour to be removed from a natural gas with greater efficiency.
According to the invention, there is provided a method of removing water from natural gas which comprises: bringing the natural gas into contact with a liquid including an absorbent for the water; subjecting the natural gas and liquid to turbulent mixing conditions thereby causing the water to be absorbed by the absorbent; and separating a natural gas phase with reduced water content and a liquid phase including the absorbent and absorbed water; and in which the mixing is conducted in a turbulent contactor including a gas inlet, a liquid inlet, an outlet leading to a venturi passage and a tube extending from the outlet back upstream, the tube being perforated and/or being spaced from the periphery of the outlet.
While the invention has been described in relation to natural gas, it is equally applicable to other gases with a water content which it is desirable to reduce.
The invention also extends to the apparatus for carrying out this method.
The turbulent mixing is very intense and results in extremely efficient gas liquid contact. The mixing regime is preferably turbulent shear layer mixing. The liquid entrained in the gas may be in the form of droplets for gas continuous fluid phase distribution. The efficient mixing means that absorption can take place very rapidly and in a relatively small total volume of absorbent compared to that required in conventional absorption columns. The mixing system used is simple and inexpensive compared to prior art systems, leading to reduced costs. Finally, an efficiency of approaching 100% for the removal of water can be achieved for certain applications.
The advantages of such a mixer in relation to conventional countercurrent dehydration towers are a reduction in the size and weight of the equipment.
Preferably, the method is carried out as a continuous process with the natural gas and liquid flowing co-currently. The co-current flow reduces the problems associated with foaming and flooding, since absorption can continue downstream of the contactor.
One suitable contactor is a mixer supplied by Framo Engineering A/S and is described in EP-B-379319.
Preferably, the tube is located in a vessel, the vessel including the gas inlet, the liquid inlet and the outlet. In one possible regime, the natural gas is supplied to the tube, optionally directly, and the liquid is supplied to the vessel, and so the natural gas stream draws the liquid into the venturi and the two phases are mixed. In another regime, the natural as is supplied to the vessel and the liquid is supplied to the tube, optionally directly, whereby the natural gas is drawn into the venturi by the liquid and the two phases are mixed. In a third regime, the liquid and the natural gas are supplied to the vessel, the liquid being supplied to a level above the level of the outlet, whereby the natural gas is forced out through the outlet via the tube, thereby drawing the liquid into the venturi so that the two phases are mixed.
Preferably, the natural gas and the liquid are formed into a homogeneous mixture in the contactor, the homogeneous mixtures optionally being cooled prior to separation into a gas phase and a liquid phase. Preferably, the homogeneous mixture is separated into a gas phase and a liquid phase in a hydrocyclone. Preferably, the absorbent in the liquid phase is subjected to a regeneration treatment to remove the absorbed water. Preferably, the regenerated absorbent-coating liquid phase is recycled to the contactor. Preferably, the regeneration is carried out by heating and/or by flashing off the water. Where the absorbent is a glycol, regeneration may be carried out by heating the solution to about 200° C. and passing the vapours to a fractionating tower. Preferably, the post-mixing cooling and the regenerative heating are achieved, at least in part by mutual heat exchange.
Partial recovery of the glycol may be attained by flashing off the water vapour by reducing the applied pressure on the liquid after gas dehydration. Where this is used then a similar turbulent mixer may be considered for this duty. This flashing operation will only give a partial glycol regeneration. In order to get to the very low levels of water content of the glycol solutions necessary for gas dehydration, heating of the solvent phase is required.
According to a more specific aspect of the invention, there is provided a method for removing water from a natural gas which comprises: supplying the natural gas to a turbulent contactor; supplying a liquid including an absorbent for the water to the contactor; subjecting the natural gas and the liquid to turbulent mixing in the contactor to form a homogeneous mixture; allowing the water to
Linga Harald
Nilsen Finn Patrick
Patterson Thuente Skaar & Christensen P.A.
Smith Duane S.
Statoil ASA
LandOfFree
Method and apparatus for the drying of natural gas does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for the drying of natural gas, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for the drying of natural gas will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3292515