Method and apparatus for the distribution of ice

Agitating – Stirrer within stationary mixing chamber – Rotatable stirrer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C406S135000, C406S053000, C406S054000, C406S056000, C406S060000, C406S122000, C062S344000, C062S378000, C062S381000

Reexamination Certificate

active

06561691

ABSTRACT:

BACKGROUND OF THE INVENTION
The field of the present invention is pneumatic ice distribution to dispensing stations.
Apparatus and methods for distributing ice to remote stations have been developed, particularly for use in the food service industry. Such systems incorporate a central ice bin, transport conduits, remote dispensing stations and a source of pneumatic energy to move the ice from the central bin to the dispensing stations. One such system is illustrated in U.S. Pat. No. 5,549,421, the disclosure of which is incorporated herein by reference.
In designing such systems, important considerations include enhancing ice flow, maintaining the integrity of the ice in a frozen state and avoiding contamination. In operating such systems, ice has been found to have a tendency to stick together and form blockages in the handling system. Avoidance of such blockages and the proper handling of a blockage when it does occur are of critical importance to the reliability to such systems. Maintaining the ice in an appropriate frozen state is also important. Localized thawing followed by re-freezing encourages the agglomeration of pieces of ice, resulting in blockage and inappropriate dispensing. The quality of the ice dispensed also is dependent upon the appropriate maintenance of uniform temperatures. Contamination has been a problem in such systems. Ice bins form a convenient source for manually taking scoops of ice. Further, placing foreign objects, such as glasses and bowls, in the ice for chilling has also been found to be a common, if inappropriate, use of ice bins. Resolutions of these issues is necessary for public safety and commercial acceptance of such systems.
SUMMARY OF THE INVENTION
The present invention is directed to an ice delivery system including various mechanical components therefor and modes of operation.
In a first separate aspect of the present invention, the ice delivery system includes a source of ice, an ice bin and two sets of at least one agitator each. Each set of at least one agitator includes a periodic cycle. The frequency of the periodic cycle of the set closest to the bin outlet is substantially greater than the frequency of the periodic cycle of the other set. Ice is thus able to move through the bin without bridging or blockage and, at the same time, without being excessively stirred.
In a second separate aspect of the present invention, the ice delivery system of the first aspect may have a ratio of frequencies between sets of 10:1. Additionally, the agitators may move less than one full revolution for each periodic cycle. The bin may have a V-bottom with an augur located at the convergence of the V-bottom. Various agitator configurations are contemplated. Agitators adjacent to the augur may include augur elements oriented to move ice away from the outlet. The augur may be of increasing pitch toward the bin outlet. Each contributes to consistent flow through the bin and discharge.
In a third separate aspect of the present invention, an ice delivery system includes an ice bin with a channel in the bottom thereof leading to an outlet. The outlet has a larger horizontal major cross-sectional dimension than the channel. An augur is rotatably mounted in the channel. The augur may extend outwardly of the ice outlet. Reduced blockage is contemplated. A breaker element may be arranged adjacent the augur outwardly of the ice outlet to avoid further any ice buildup.
In a fourth separate aspect of the present invention, an ice delivery system includes a multi-station diverter. The diverter is associated with an ice transport conduit and with distribution conduits which extend to a plurality of receiving stations. The ice transport conduit extends downwardly to the diverter while the distribution conduits extend downwardly from the diverter at the portions of those conduits adjacent the diverter. This orientation of the conduits avoids ice blockage in the diverter. The downward orientation of the conduits may additionally be vertical to further inhibit ice blockage.
In a fifth separate aspect of the present invention, the ice delivery system includes a multi-station diverter including a rotatably mounted diverter tube which has an inlet end concentric with the axis of rotation and an outlet end displaced from the axis by a fixed distance. A transport conduit is associated with the inlet end while distribution conduits are placed about the axis of rotation at the same distance as the outlet end of the diverter tube. A conduit is thus presented through the diverter matching up with the incoming transport conduit and the outgoing distribution conduits.
In a sixth separate aspect of the present invention, the multi-station diverter of the fifth separate aspect is contemplated to include further a support for the diverter tube which has sockets cooperating with an actuated pin to properly align the diverter tube with the distribution conduit inlets. Station markers may be associated with the support to provide input to a controller for properly locating the diverter tube.
In a seventh separate aspect of the present invention, the ice delivery system includes an air directional valve and a source of constant transporting air. The valve includes valve elements which selectively open to alternatively supply air to an ice transport conduit and to exhaust. In this way, the source of constant transporting air may be rapidly applied and rapidly diverted from the pneumatic conveyor.
In an eighth separate aspect of the present invention, the ice delivery system includes an ice transport conduit, a controlled source of transporting air and an ice gate which includes a substantially vertically extending passage, an ice inlet open laterally into the passage, an air inlet open into the passage below the ice inlet and an ice and air outlet below the air inlet. A gate in the passage has two extreme positions. One of the positions closes off the ice inlet to avoid air flow toward the ice inlet while the other provides for charging of ice into the transport conduit from the ice inlet.
In a ninth separate aspect of the present invention, the ice delivery system includes an ice bin and receiving stations with a pneumatic system for selectively distributing ice from the ice bin to the receiving stations. Ice level sensors are located in the bin and the receiving stations. A visual ice level monitor is coupled with the bin for maintaining the integrity of ice within the bin. A locking element may further restrict entry.
In a tenth separate aspect of the present invention, an ice delivery system conduit coupling has two end pieces, each with a tubular clamp section and a tubular extension section. The tubular extension sections have inner shoulders facing the tubular clamp sections and have attachments with sealing surfaces. The sealing surfaces are engaged facing one another with a sealing element therebetween. The tubular extension sections each have an inner shoulder facing the tubular clamp sections and inner truncated conical surfaces. One of the inner truncated conical surfaces tapers inwardly from the associated shoulder while the other tapers outwardly from the associated shoulder. The arrangement provides a coupling which is to avoid ice blockage. The tubular clamp sections may optionally be partially split longitudinally and include circumferential channels to receive clamp bands.
In an eleventh separate aspect of the present invention, an ice delivery system conduit coupling includes a coupling tube with a clamp sleeve extending thereover. The clamp sleeve includes longitudinally split ends and circumferential channels about the split ends which may receive clamp bands. The coupling tube fits within the clamp sleeve between annular sealing flanges located on the inner surface of the clamp sleeve. Conduit ends extend between the coupling tube and the clamp sleeve at either end thereof. Sealing and resistance to ice blockage are to be achieved by the annular sealing flanges capable of constricting the conduit to form sealed smooth transitions with the coupling tube.
In a twe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for the distribution of ice does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for the distribution of ice, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for the distribution of ice will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3060538

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.