Method and apparatus for testing tires

Measuring and testing – Tire – tread or roadway

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S146200

Reexamination Certificate

active

06615650

ABSTRACT:

This application claims the priority of German Application No. 100 19 386.2 filed Apr. 19, 2000, which is incorporated herein by reference.
BACKGROUND OF THE INVENTION
It is known to utilize pressure testing machines for examining tires, particularly prior to re-threading. In such a procedure the tire is inflated from a low pressure to a high pressure. The operator manually feels the side walls and the running surface while the tire rotates. In this manner bulges which indicate damages, are recognized and the testing procedure is stopped. This method involves a substantial risk of accident and injury to the operator because a seriously damaged tire may burst during testing before the operator has recognized the defective location and before he stops the testing process.
The above-outlined risks may be eliminated by automatic testing processes and apparatus. Thus, for example, U.S. Pat. No. 5,313,827 discloses a testing process in which the tire is measured, along a base line extending on the side wall, first at a low pressure and, for a second time, at a high pressure. To detect structural defects, the respective base lines produced at low and high pressures are compared with one another. Measuring the base line may be effected by a mechanical contacting sensor or a contactless point measuring system. The measurement along the base line occurs during a continuous rotation of the tire.
European Patent No. 823,623 discloses an interferometric method of testing tires. The shearing module used in the method is adjusted in such a manner that the shearing direction is oriented radially to the tire. Since the measuring method operates interferometrically, measuring has to be conducted such that examination is performed by sectors and for each sector the tire pressure has to be changed. The required pressure change, however, is very slight because of the high degree of measuring sensitivity.
The continuous measurement along a base line has the advantage that it may be performed very rapidly. It is, however, its disadvantage that only a very small portion of the upper surface is examined. A defect which has a substantial distance from the base line will have no effect or only a slight effect on the base line and therefore remains undetected. Further, as a result of the pressure increase the tire expands both in the transverse and radial directions so that the base line, in case of a fixed mounting of the sensors on the testing machine, shifts relative to the tire surface. Because of surface irregularities, such as seams, relief scripts and the like, noise signals may be produced during measurement which are then erroneously considered as structural defects.
The above-outlined interferometric process is disadvantageous in that the sensitivity of the shearing module is determined exclusively by the shearing direction and shearing angle rather than by the shape of the tire surface. Thus, the expansion during shearing is measured with respect to the distance of the image points corresponding to the shearing angle and not with respect to the true distance of the imaged surface points. Therefore, the sensitivity strongly fluctuates dependent on the distance of the object relative to the shearing module and dependent on the inclination of the tire surface with respect to the direction of observation. As a result of such an arrangement, in case of a convex side wall, particularly in combination with the divergent beam course of the shearing module, a great number of interference lines are visible in the interferograms of the shearing module, although the true expansion of the tire is approximately constant. Thus, detecting actual structural defects is made very difficult.
SUMMARY OF THE INVENTION
It is an object of the invention to provide an improved method which makes possible an accurate determination of changes in the tire surface as the tire pressure is changed.
It is a further object of the invention to provide an economical apparatus for performing the method which requires no interaction by the operator whatsoever, thus fully excluding risks of accidents and injury.
These objects and others to become apparent as the specification progresses, are accomplished by the invention, according to which, briefly stated, the apparatus for testing tires performs the following steps: rotating the tire relative to a camera; protecting light sections on a tire surface; capturing projected light sections by the camera at defined rotary positions of the tire relative to the camera; applying signals representing the captured projected light sections to an image processing system; determining the shape of the captured projected light sections by the image processing system; determining the shape of the tire surface from the shape of the captured projected light sections; repeating the above steps for different inflation pressures of the tire; and comparing the determined shapes of the tire surface for different inflation pressures of the tire for determining shape changes of the tire due to changes in the inflation pressure.
Thus, according to the invention, the change of the tire shape caused by an inflating pressure change is detected by projecting light sections onto the tire surface, and the light is detected by a camera having a flat image sensor. The camera is preferably a video camera provided with a CCD chip. It suffices to project a sole light section, while it is also feasible to project simultaneously several light sections. The tire is rotated, preferably about its travel (rolling) axis, relative to the camera and thus, at the same time, relative to the light projecting device. The capturing of the light sections by the camera is, according to the invention, performed at defined rotary positions of the tire relative to the camera. In this manner different portions of the tire surface are sequentially detected. The defined rotary positions ensure among others that the measurements taken at different tire pressures may be subsequently compared with one another. To perform the measurement rapidly, the tire is advantageously continuously rotated relative to the camera, and the light sections are received by the camera for illumination periods which are short in relation to the rotary speed. For this purpose the camera is advantageously provided with a mechanical or electronic shutter, and image capturing by the camera is preferably synchronized with the rotary motion of the tire by a suitable device, such as an induction switch. Such a Synchronization ensures that light sections are produced at defined rotary positions of the tire.
It is, however, also feasible to rotate the tire in defined steps intermittently relative to the camera and to capture the light sections when the tire is at a standstill. According to the invention, the three-dimensional form of the light sections is determined by triangulation via the image processing system. The three-dimensional shape of the tire may be determined by the three-dimensional pattern of the light sections. Occasional discontinuities can be closed by interpolation, and filters for the measuring data may be used for cleaning such data.
According to the invention the contour measurement is repeated at different tire pressures and the thus measured surface shapes of the tire are compared with one another. For this purpose light sections produced at identical rotary positions at different tire pressures are utilized. The pressure change is preferably effected in such a manner that the tire pressure, starting from a small initial pressure, is increased either continuously or in steps between contour measurements.
In determining the change in shape, the availability of the true surface contour yields very significant advantages. If one considers, for example, a tire bulge in the wheel region, the change of shape may be accurately examined tangentially or orthogonally to the upper tire surface. An assumption can always be made that the tire bulge or the tire rim do not appreciably deform as the tire pressure changes. If, according to an aspect of the inventi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for testing tires does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for testing tires, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for testing tires will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3040625

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.