Measuring and testing – Coating material: ink adhesive and/or plastic
Reexamination Certificate
2000-08-18
2001-09-04
Noori, Max (Department: 2856)
Measuring and testing
Coating material: ink adhesive and/or plastic
C073S827000
Reexamination Certificate
active
06282950
ABSTRACT:
BACKGROUND OF THE INVENTION
This invention relates to the testing of bond strength of materials and more particularly to methods and apparatus for measuring and testing the strength of a bond between an element or a coating and a surface, body, or substrate to which the element or coating has been attached. In the case of a coating for example, this might be a protective coating, such as paint or metal cladding on an element which in use would be subject to corrosive environments, or simply oxidation. Another example would be metal cladding on a nuclear fuel element,
Adhesion testers of the type of this invention for testing the bond strength of materials are shown and referred to in U.S. Pat. No. 4,567,758, to R. K. Fisher and & L. Fisher, the teachings of which are incorporated in their entireties herein by reference. This prior patent points out that although adhesion testers of this type have been made in various forms which operate in different ways they generally have four steps in common: (1) attaching a fastener to the material to be tested, (2) applying a tensile force to the fastener along an axis normal to the surface, (3) measuring the maximum tensile force required to cause bond failure, and (4) computing a relative measure of the bond strength by dividing the maximum tensile force by the area of the stressed surface of the failed bond. The Fisher patent then discusses major problems encountered in each of these steps and the manner in which these problems are overcome by the apparatus invention set forth in said patent.
However, there is an additional problem in carrying out step (1) in that an undesirable amount of time is necessary for curing of the adhesive such as epoxy or other suitable material, which is strong enough for the intended purpose for example, used to attach the fastener to the coating or layer to be tested. This delays the measuring and testing process and can be costly, particularly in a continuously operating system, such as in a production or assembly line, or where rigid time constraints are required to meet a predetermined schedule, for example.
Additional prior patents in the field of testing of bond strength of materials are discussed below. U.S. Pat. No. 4,586,371 shows an apparatus for testing the adhesive bond strength between a coating and a substrate using a piston and cylinder coupled to a dolley which is adhesively connected to the coating by cured epoxy. U.S. Pat. No. 5,176,028 shows an apparatus and method for testing bond strength of overlapped ends of substrate material to which adhesive has been applied to bond the ends together. The ends are pressed together with the bonding material between them by opposing press heads having heaters for heating the test samples during pressing for a predetermined time interval to assist in setting the bond material. The ends are then sheared apart and data is compiled representing the relationship between bonding strength development and temperatures, and between bond strength and bonding pressure. U.S. Pat. No. 5,671,634 shows an apparatus and method for testing adhesion quality of coatings applied onto a substrate wherein a pulling element has a face at one end which is joined to the coating by an adhesive disk preferably made of cyanoacrylate having a thermosetting temperature of about 25 C and a curing time of 15-30 minutes. A piston and cylinder device connected to the pulling element operates to pull the latter and the disk in a direction normal to the coating tending to separate the coating from the substrate. Prior to the pulling operation the assembly is subjected to heat to set the adhesive disk.
It is also known to use light curable adhesives for securing various elements together, such as a cyanoacrylate material known as “Loctite”4304.
These prior art patents all have the same time delay problems pointed out above in that considerable time may be lost in carrying out the process due to the curing time required for the adhesive. The present invention provides a solution to these problems.
It is also known to use high intensity light devices for various purposes, such as described in U.S. Pat. No. 4,729,070, powered by a compatible lamp source to provide the desirable light intensity.
SUMMARY OF THE INVENTION
It is a principal object of the invention to provide a method and apparatus for reducing the time required to conduct a measuring and testing operation for determining the bond strength of materials such as coatings, for example. It is a further object of the invention to provide a method and apparatus for eliminating the curing time previously required for adhesives used in joining pulling devices to coatings being tested to determine the strength of bonds between the coatings and substrates to which the coatings have been applied. It is a still further object of the invention to provide a method and apparatus for measuring the in-situ bond strength of materials which is adaptable to a wide variety of materials.
It is a further object of the invention to provide a method and apparatus for producing a bond between the adhesive joining pulling devices to coatings being tested and the coatings which has a substantially greater strength than heretofor known.
It is another object of the invention to provide a method and apparatus for measuring the bond strength of materials which can be directly calibrated and verified.
It is a further object of the invention to provide a method and apparatus for measuring the bond strength of materials which is inherently self-aligning, and is small, inexpensive, and suitable for field service.
It is still another object of this invention to mitigate friction at all seal boundaries and produce a supplemental force capable of further compensating for residual losses.
The foregoing and other objects of the invention are achieved by the method described herein including the steps of providing a substrate having a coating thereon to be tested for bond strength between the coating and the substrate, connecting a pulling device to a section of the coating by an adhesive that is curable by irradiation with light, irradiating the adhesive with light to cure the adhesive and produce a strong bond between the pulling device and the coating, exerting a force on the pulling device in a direction substantially normal to the coating tending to strip the coating from the substrate, measuring the force required to strip the coating from the substrate, and computing a relative measure of the bond strength by dividing the maximum pulling force by the stressed surface area of the failed bond. The method of this invention may also include additional steps of providing an instant pull stub made of light transparent material, or a pull stub that is at least partly transparent to light, applying the adhesive to connect the instant pull stub to the coating by the adhesive, irradiating the adhesive with light,preferably high intensity light through the stub, connecting the pulling device to the stub, and supporting and guiding the pulling device during the force exerting step.
The above and other objects of the invention are further achieved by the apparatus described herein including a housing having a longitudinal axis normal to predetermined area, preferably a central area, on its upper transverse surface, a cavity formed in the upper surface including the central area, the cavity having a centroid of transverse area lying on the longitudinal axis of the housing, a fluid seal member, or piston, received in the cavity, a reaction plate covering the upper surface of the housing and cavity, and a source of pressurized fluid communicating with the cavity and the inner surface of the seal member forming one side of the cavity and a fluid pressure sensing device. Further in accordance with the preferred embodiment of the invention a stub member of light transparent material, or a stub member that is at least partly transparent to light, is attachable at its lower end to the coating on the substrate by light curable adhesive and has a connecting part at its upper end for
Massey Jon Allen
Taylor, Jr. Myron Eugene
Erdley Randall G.
M. E. Taylor Engineering, Inc.
Noori Max
LandOfFree
Method and apparatus for testing the bond strength of materials does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for testing the bond strength of materials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for testing the bond strength of materials will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2524432