Method and apparatus for testing mobile communication device...

Telecommunications – Transmitter – Measuring – testing – or monitoring of transmitter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S067150, C455S062000, C455S067700, C455S425000, C375S132000

Reexamination Certificate

active

06233437

ABSTRACT:

BACKGROUND OF THE INVENTION
Mobile phones are tested during manufacturing and in service depots to ensure ultimate quality control for fulfilling the necessary specifications for operating in the cellular network. As for manufacturing, such test measurements serve to determine when it is necessary to exchange defective components, to minimize manufacturing errors and to maintain quality control. Further, regarding end control, the test measurements serve for checking the basic functions and for the final trimming or alignment of the mobiles. Also, test measurements can assist in the search for defects in defective mobiles in a repair shop or checking basic functions in a dealer's shop. In order to conduct such quality measurements test equipment for carrying out RF tests is required, in particular so-called mobile testers.
In the prior art, for determining the transmission quality respective measurement values, characteristic of the relevant specifications, are taken in single frequency channels of a cellular telecommunication net or network. Measurements values comprise RF parameters such as power, frequency, phase/frequency error, burst behavior, time behavior and bit error rate for single communication channels of a network. The sampling of the relevant physical measurement values or parameters for characterizing the channel properties are considered to be important means or tools for determination of the RF parameters and, thus, for securing quality when manufacturing or servicing mobiles. The selection of several frequency channels serves for testing or checking whether the mobile or terminal or telecommunicator fulfills its specifications over the entire frequency range.
To this end, the frequency channels of the used frequency band (e.g., frequency channels f
1
, f
2
and f
3
shown in
FIG. 1
) are sequentially switched through, wherein a complete measurement of the respective frequency channel relating to measurement values such as power, frequency, phase, burst behavior, time behavior and bit error rate is taken before the measurement is switched to the next channel (see FIG.
2
). That is, in the prior art these quality measurements are carried out sequentially for the single frequency channels. In each single frequency channel the entire or complete desired set of measurement values or RF parameters is sampled before it is switched over to the next frequency channel to start the measurement procedure anew.
The switching between the single frequency channels requires, at each and every time, the exchange of data packets or telegrams comprising command signals between the mobile tester and the mobile under test in order to adjust the mobile to the respective new frequency channel, also in particular with respect to exact point in time when the switching is intended to take place. In other words, in order to switch the mobile under test to the respective next frequency channel and to adjust it thereto, in particular regarding the timing and synchronization, there have to be intermittently exchanged protocol sequences comprising command signals between the mobile under test and the testing device (see FIG.
3
). In summation, unwanted long measurement times are necessitated since command signals have to be exchanged between the mobile tester and the mobile and the necessary synchronization of the tester with the mobile for switching between the frequency channels with interweaved measurement cycles. On the one hand these long testing times are caused by the time a measurement takes and on the other hand by the command intervals. Thus, this process is very time consuming and needs much specialized software.
Regarding repair and service of mobiles, it is known to carry out adjustments or trimmings of components in these mobiles in order to optimize transmission quality. It is quite time consuming to determine the effect of such adjustments and trimmings for all parts of one or more frequency bands, in particular also within one band. Therefore, such a trimming is quite time consuming, costly and difficult to optimize.
Telecommunication systems or networks are known in the prior art which comprise a so-called frequency hopping technique. As an example, so-called GSM, i.e.
G
lobal
S
ystem of
M
obile communications, systems are known. With these systems during transmission operation of a mobile a digitized speech signal is transmitted using a frequency hopping technique using several frequency channels of a frequency band, wherein in a fraction of a second a switching occurs from one frequency channel to a next one. By using more than one frequency channel in a successive manner the transmission of information is less dependent on the transmission quality of a single frequency channel. Thereby, the frequency hopping ability of the GSM network serves for reducing the danger of interferences by using several frequency channels which are switched over from burst to burst in a particular order. The prior art is unsatisfactory in that the known measurement methods are time consuming and thereby costly.
OBJECT OF THE INVENTION
The object underlying the present invention is to overcome the drawbacks of the prior art mentioned-above, and in particular to provide a method and an apparatus for testing telecommunicators, in particular mobiles phones, which requires considerable less time and still achieves a high quality measurement.
SUMMARY OF THE INVENTION
According to a first aspect, the present invention relates to a method of operation for a telecommunicator testing device intended for measurements of telecommunicators. In particular, cellular phones or mobile phones, which are used in connection with at least one net comprising frequencies or frequency channels, wherein characteristic measurement values for at least two frequencies or frequency channels are determined for the telecommunicator under test. The measurement values are assigned to the frequency channels. According to a second aspect, the present invention relates to a method for adjusting and/or trimming of a telecommunicator, in particular a RF terminal, such as a cellular phone or a mobile phone, operating in connection with at least one net comprising frequencies or frequency channels, using a telecommunicator testing device. Characteristic measurement values in at least two frequencies or frequency channels are determined for the telecommunicator device under test, and wherein the telecommunicator is adapted for a frequency hopping method.
According to the present invention the entire information concerning the control of the measurement is defined at the beginning of the measurement and is transmitted from the testing device to the mobile. According to the second aspect of the present invention, an on-line display of the measurement values is achieved by controlling the measurement according to a pre-defined test frequency list in accordance with the frequency hopping technique. Inasmuch as based on the frequency hopping technique a plurality of frequencies is sampled or reached within a second the effects of a trimming or of an adjustment concerning hardware and/or software of a mobile can be displayed on a screen or a monitor in real time or simultaneously for a large frequency range, in particular also for several frequency bands. Thus, a faster and better testing can be carried out.
It is characteristic for the present invention that before the actual measurement starts a protocol phase is initiated comprising an agreement list of the respective frequency channels, wherein the frequency hopping ability inherent to the network is used. This is in contrast to the prior art which relies on measurements in the respective frequency channels and comprises intermittent protocol sequences for switching over and adjusting the mobile. By eliminating these intermittent protocol sequences, each having a duration of a second or longer, the time needed for testing can effectively be reduced to the process of measurement and subsequently enormous time can be saved. At the beginning of the measurements the sequence

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for testing mobile communication device... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for testing mobile communication device..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for testing mobile communication device... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2534819

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.