Illumination – Supported by vehicle structure – Automobile
Reexamination Certificate
1999-05-06
2002-05-14
Cariaso, Alan (Department: 2875)
Illumination
Supported by vehicle structure
Automobile
C362S135000, C174S257000, C174S258000
Reexamination Certificate
active
06386741
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to methods and apparatus for supplying power to electrical or electronic devices. More particularly, the present invention relates to those methods and apparatus that use the electrical or electronic devices in conjunction with a glass or similar substrate.
BACKGROUND OF THE INVENTION
It is often quite useful to be able to place electrical or electronic devices on or very close to the surface of a glass substrate. Without meaning to limit the scope of the present invention, typical examples of such uses are with respect to the mounting of lights in the vicinity of vanity mirrors for use in automobile visors or placing a heating element on the surface of a glass.
A discussion of the illuminated vanity mirror for use in the visor of an automobile provides an illustration of the usefulness and problems associated with the placement of electrical or electronic devices on or very close to the surface of a glass substrate. Similar problems exist with most of the situations where it is desirable to mount an electrical or electronic device on or near the surface of a glass substrate.
Vanity mirrors which mount to sun visors have long been a popular accessory in passenger automobiles. Typically, the mirror is mounted on the upper surface of the sun visor, so that when the sun visor is swung downwardly to a sun shading position, the mirror is aligned with the face of the driver or passenger for uses such as personal grooming and the like. Certain of such vanity mirrors have been provided in packages with electric lighting which illuminates the users face for night time operation or to approximate ambient light conditions to be encountered by the user at his or her destination. One known type of lighted vanity mirror includes a pair of electric lamps disposed at opposite ends of the mirror and a pivotable cover for covering the mirror and lights when not in use. Circuitry for connection of the lights to the automobile's electrical system, including an on/off switch and often times a dimming control, is also provided in the module.
It has been found that such lighted vanity mirror modules can be improved upon in a number of respects. One potential area of improvement lies in the packaging of the electrical circuitry employed in the module. Traditionally, most illuminated vanity mirror modules comprise a shallow housing covered by an appearance bezel which usually supports the mirror, lid, and lenses for the electric lamps and the mirror. The electrical circuitry consisting of an on/off switch in some cases a dimming control, a pair of bulbs, and electrical conductors comprising metallic stampings or wires including the bulbs, switch and dimmer, are disposed in the housing beneath the bezel. Where the circuit conductors comprise metallic stampings, such stampings are often heat staked to, or molded within a base plate of the housing.
Such constructions are disadvantageous in a number of respects. For example, the housing and bezel tend to be heavy and bulky, thereby adding significantly to the weight and bulk of the visor on which they are attached. This renders the visor cumbersome to operate and dimensionally, quite thick thereby reducing passenger head room in the automobile. Molding the metallic stampings into the housing base plate when the base plate, adds significantly to the cost of molding the housing and risks unacceptable warpage of the base plate during manufacture.
In an effort to reduce the bulk and weight of the lighted mirror module, it is sometimes the practice to mount the electrical circuit components directly to a molded sun visor blade. While this construction eliminates the need for a housing and base plate, it limits the type of visors to which the module is adaptable and, therefore, may not be useful with the padded and upholstered visors found in current luxury automobiles. Moreover, if the lighted mirror module requires service, the entire visor must be serviced since that the module is an integral part of the visor and is not conveniently removable therefrom for servicing.
Another area of improvement in current lighted vanity mirror modules lies in the construction of the dimming control. Certain mirror modules employ resistors connected along the length thereof to a plurality of contacts formed into a metallic stamping and a movable wiper contact which rides along the contacts to adjust the amount of resistance in the lamp circuit and thus control the lamp intensity. Such a construction is found in U.S. patent application Ser. No. 07/357,652. While such a construction has proven to be effective and reliable, the metallic stamping employed into which the resistor contacts are employed, is rather complex in shape, somewhat costly, and therefore not as economical as may be desired. Other lighted mirror modules such as that disclosed in U.S. Pat. No. 4,879,637 employ specialized resistors comprising resistive coatings on a circuit board. However, such resistors can be prohibitively expensive and may require multiple contacts similar to those discussed hereinabove and, therefore, are also characterized by some significant cost and complexity.
As is shown for lighted vanity mirrors, it is highly desirable to provide an apparatus for mounting an electric or electronic device on or near the surface of a glass substrate that is similarly characterized by compactness, simplicity of construction and economy of manufacture.
Therefore, it is an object of the present invention to provide an apparatus that will allow the mounting of an electrical or electronic device on or near the surface of a glass substrate.
It is a further object of the present invention to provide such an apparatus that is compact in construction.
It is an additional object of the present invention to provide such an apparatus that is simple to construct.
It is yet another object of the present invention to provide such an apparatus that is relatively inexpensive to manufacture.
Consideration of the specification, including the several figures to follow, will enable one skilled in the art to determine additional objects and advantages of the invention.
SUMMARY OF THE INVENTION
Having regard to the above and other objects and advantages, the present invention generally provides for an apparatus for supplying power to and for holding an electrical or electronic device. The apparatus generally comprises a glass substrate having at least a surface. The apparatus of the present invention also includes a conductive strip applied to the surface of the glass substrate. The apparatus of the present invention further includes power connective means in direct contact with the conductive strip.
In a preferred embodiment of the present invention, the conductive strip includes a material selected from the group consisting of copper and silver. Further preferred embodiments of the invention provide that the power connective means is attached to at least a portion of the conductive strip by use of a solder connection or a conductive adhesive.
The present invention also provides for an apparatus for supplying power to and for holding an electrical or electronic device. The apparatus generally comprises a glass substrate having at least a surface. The apparatus of the present invention also includes a conductive strip applied to the surface of the glass substrate and a second strip applied to the surface of the glass substrate wherein the second strip covers at least a portion of the conductive strip. The second strip may be a strip selected from the group consisting of a conductive strip, a resistive strip, or an insulating strip. The apparatus of the present invention further includes device connective means for connecting the electrical or electronic device to the apparatus and power connective means. The device connective means is in direct contact with at least a portion of the conductive strip and receives power for the electrical or electronic device from the power connective means through the conductive strip.
In a preferred embodiment of the present invent
Jones Barrie M.
Kimmet Mark A.
Cariaso Alan
Pitts & Brittian P.C.
Polymore Circuit Technologies, L.P.
LandOfFree
Method and apparatus for supplying power to an electrical or... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for supplying power to an electrical or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for supplying power to an electrical or... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2880583