Method and apparatus for sorting semiconductor devices

Classifying – separating – and assorting solids – Sorting special items – and certain methods and apparatus for... – Condition responsive means controls separating means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C209S573000, C209S905000

Reexamination Certificate

active

06521853

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an apparatus and method for sorting semiconductor devices.
2. Brief Description of the Art
Various types of integrated circuit devices have evolved since the development of the semiconductor. Such semiconductor devices have innumerable applications in industry and commerce. In the manufacture of semiconductor devices, it is known to first create a strip which constitutes an integral unit containing numerous semiconductor devices within the strip. For example, a strip of semiconductor devices may have 40, 80, or 100 semiconductor devices contained within the strip. The strip of semiconductor devices are then taken to a cutting apparatus where the strip is cut into numerous units separating and singulating out each individual semiconductor device. Once the strip has been singulated into individual semiconductor devices, it is known in the industry to sort and transfer the singulated semiconductor devices to various locations for further processing. For example, it is known in the art to transfer these singulated semiconductor devices to JEDEC trays, bulk bins, shipping tubes, or a tape and real apparatus where the singulated semiconductor devices are then transferred to another location for further processing.
Various semiconductor device handlers or transfer systems have been developed within the semiconductor device industry for transferring (or off loading) the singulated semiconductor devices to predetermined locations for further processing. For example, it is known to have an automated mechanism which picks up an individual singulated semiconductor device after it has been cut from the strip and then places the singulated semiconductor device in the appropriate location such as a JEDEC tray or bulk bin. The robotic arm then returns and picks up the next singulated semiconductor device and moves it to the predetermined location for unloading the semiconductor device at the appropriate location for further processing. The problem with such systems is that by picking up individual semiconductor devices one at a time, such devices are slow and inefficient in off loading the singulated semiconductor devices for further processing. Further, such a system does not provide for any intelligent sorting of the semiconductor devices in an application where the semiconductor devices have previously been tested for quality purposes.
For example, it is known in the industry to test an entire strip of semiconductor devices so that quality information can be obtained for each individual semiconductor device located on the strip. However, the current sorting apparatuses for off loading the singulated semiconductor devices from the strip location to the predetermined off load location for further processing do not utilize any of the quality information obtained regarding the individual semiconductor devices on the strip. Rather, these current off loading systems simply transfer all of the singulated semiconductor devices, one at a time, to a predetermined off load location without regard to any quality information known about the particular semiconductor device. In other words, all the “good” and “bad” semiconductor devices are offloaded to the same location. This then requires further testing or visual inspection of different characteristics of the singulated semiconductor devices to sort the “good” and “bad” devices.
Other systems for off loading singulated semiconductors devices involve simply “dumping” the entire strip of singulated semiconductor devices into a bulk bin for transfer to a location for further processing. Numerous disadvantages with this type of system include the fact that the semiconductor devices are not retained in an orientation for ease of handling for further processing. Another disadvantage is that the devices are not sorted based on any quality information related to the specific semiconductor devices.
As noted above, it is known in the semiconductor device industry to test a strip of semiconductor devices prior to singulation of the individual semiconductor devices. In this regard, it is known in the industry to create an electronic strip map which contains address or location information and quality information (i.e., such as “good” or “bad”) specific to each individual semiconductor device on the strip. For example, a strip of semiconductor devices can be submitted for testing as a whole, prior to singulation, and quality information can be obtained for each specific semiconductor device on the strip. An electronic strip map is then created which contains specific address and quality information related to each individual semiconductor device on the strip. One industry organization, Semiconductor Equipment and Materials International (SEMI), has developed draft standards for the creation of electronic strip maps for strips of semiconductor devices. However, even with the creation of electronic strip maps related to strips of semiconductor devices, the information contained in the electronic strip map has not been utilized in the industry to increase the efficiency of off loading singulated semiconductor devices from a strip for further processing.
What is needed is a method and apparatus for sorting singulated semiconductor devices which is fast and efficient in transferring the singulated semiconductor devices from the singulated location to a predetermined off load location, such as a JEDEC tray, bulk bin, etc., for further processing.
SUMMARY OF THE INVENTION
The present invention provides a method and apparatus for sorting semiconductor devices which is able to efficiently off load a strip of singulated semiconductor devices to various predetermined locations for further processing. The invention further provides an apparatus and method which is able to pick up a plurality of singulated semiconductor devices and intelligently transfer the plurality of singulated semiconductor devices to various predetermined locations for further processing.
According to one embodiment of the present invention, there is provided a method for sorting semiconductor devices for processing where semiconductor devices have been singulated from a strip containing a plurality of semiconductor devices while still retaining the semiconductor devices in a form corresponding to their positioning on the strip. Additionally, an electronic strip map has been created corresponding to the strip of semiconductor devices and the electronic strip map contains address and quality information related to each individual singulated semiconductor device. The method includes moving a pickup device to a location adjacent the singulated semiconductor devices and selectively picking up a first plurality of singulated semiconductor devices based on the electronic strip map information related to the singulated semiconductor devices. The method further includes moving the semiconductor devices that have been picked up to a predetermined location based on the electronic strip map information for the specific semiconductor devices that have been picked up and unloading the first plurality of semiconductor devices at the predetermined location.
In one embodiment, the method further includes a step of visually inspecting the first plurality of semiconductor devices which have been picked up by the pickup device for transfer to the predetermined location. The visual inspection confirms that the semiconductor devices picked up correspond to the first plurality of semiconductor devices that were selected to be picked up based on the electronic strip map information. In addition, the step of visual inspection can further include a quality inspection of the semiconductor devices that have been picked up and based on the quality inspection, modify the predetermined unload location for any semiconductor device that is determined to have a different quality characteristic than the quality characteristic indicated by the electronic strip map information for that particular semiconductor device.
In one embodiment, the method of sorting s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for sorting semiconductor devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for sorting semiconductor devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for sorting semiconductor devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3167374

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.