Surgery – Diagnostic testing – Detecting nuclear – electromagnetic – or ultrasonic radiation
Reexamination Certificate
2000-10-13
2003-12-30
Imam, Ali M. (Department: 3737)
Surgery
Diagnostic testing
Detecting nuclear, electromagnetic, or ultrasonic radiation
C600S461000, C600S463000, C600S464000
Reexamination Certificate
active
06669643
ABSTRACT:
TECHNICAL FIELD
The invention relates to method and apparatus for sonographic or fluoroscopic examination, biopsy, and excision; more particularly, it relates to method and apparatus for sonographic examination, biopsy, and excision within multi-chambered cavities of human and other bodies.
BACKGROUND OF THE INVENTION
It is well established that the examination of body cavities is an important part of human and animal health care. Through examination of the interior of body cavities a wide variety of undesirable health conditions may be diagnosed and treated. For example, the examination of the interior of human and animal mouths for rotting and other conditions in teeth has long been practiced. A more difficult proposition, however, has been the examination of more remote or obstructed body cavities. For example, it has only recently become possible to examine the uterus of a human female without cutting the woman open and removing it. Moreover, a survey of the state of the art reveals that there is room for much improvement in the examination and treatment of body cavities, including the retrieval of biopsy samples.
An excellent example of the need for improvement in procedures and apparatus for the examination of interior body cavities is the current state of the art in uterine examination and biopsy. It has been shown that peri-and post-menopausal vaginal bleeding (PMB) is one of the most frequent reasons for postmenopausal women to seek medical attention. In the United States, such bleeding accounts for approximately 5% of all gynecologic visits; and conservative estimates predict that over the next ten years at least one million women a year within the U.S. will develop PMB. Historically, women found to suffer from PMB were subjected to hysterectomies: the complete surgical removal of the uterus. As in the case of any major surgery, however, hysterectomy has associated risks. Yet at one time hysterectomy was the most commonly performed surgical procedure in the United States.
A recent proposal as a substitute for the performance of hysterectomies has been hormone replacement therapy. Hormone replacement therapy has met with success in approximately 80% of premenopausal and approximately 50% of postmenopausal women suffering from PMB. But it has been found that hormone replacement therapy increases the risk of endometrial and breast carcinoma. Moreover, like surgical removal of suspected and (arguably) unneeded organs, hormone replacement therapy fails to treat all causes of bleeding, such as fibroid conditions, polyps, hyperplasia, and carcinoma. Thus, while hormone replacement therapy has gained widespread acceptance, it will not benefit all women.
Other proposals for the treatment of PMB and like conditions in body cavities difficult to access have included dilation and curettage procedures, and blind aspiration biopsy. Dilation and curettage comprises dilation of the cervix while the patient is under at least a local anesthesia, and the scraping of the endometrium with a spoon-like probe. Anaesthesia having been shown to be generally undesirable where not strictly necessary, however, blind aspiration biopsy techniques not generally requiring anaesthesia have been developed. But blind procedures are limited in usefulness due to low sensitivity. Blind procedures are termed “blind” because they involve the unguided recovery of samples taken at random from what can at most amount to a limited region of the cavity, using equipment such as suction aspiration devices or curettage instruments inserted into various body cavities without benefit or capability of visual, sonic, or other guidance. Thus the removal of samples by blind procedures gives a fair indication of the presence or absence of a malignancy with only about a 60% to 80% sensitivity. However, most recent studies have shown very low prevalences for endometrial carcinoma. Not infrequently a sample of healthy tissue is removed from the wall of a cavity within very close proximity to an undiscovered, and therefore untimely treated, malignancy.
The emerging standard of care in health care is to look at, or monitor, what is being sampled or diagnosed. Accordingly, at least one proposed alternative to the foregoing procedures has employed fiber optic spectroscopy equipment to guide the removal of tissue samples. But fiber optic equipment has been found to be, for many applications—for example, uterine examination—too large to be used without patient discomfort, and its use has therefore often required the use of anaesthetics. Moreover, fiber optic equipment, due to functionally-dictated design shapes, is prone to cause injury to sensitive internal tissues and also to missing even previously located malignancies, and is difficult to guide to ensure examination of the entire cavity. Furthermore, fiber optic procedures are expensive: the average current cost for performing a fiber optic examination is about $1800.
In addition, much key information which may be gleaned from the thickness, homogeneity, and displacement of some internal tissue structures, as for example the endometrium, is unavailable through either biopsy or fiber optic procedures because neither blind biopsy needles nor fiber optic devices are capable of reliably determining internal strictural shapes or sizes, or of determining tissue thicknesses.
Moreover, many of the above-described treatments are in-patient procedures, involving hospital stays of at least one night, second and sometimes subsequent return visits, and often substantial discomfort to the patient. The treatments also frequently result in at least temporary or partial incapacitation of the recipient, including (in uterine examinations) the ability to engage in sexual intercourse.
Perhaps the most troubling difficulty with prior art procedures for the treatment of PMB, however, has been that they are conducted based on the assumption that there exists within the patient a malignancy to be found: it has in fact been found that most women who suffer from PMB bleed for other reasons. The performance of procedures like those discussed above, therefore, can result in needless discomfort, including possible injury or infection to the patient, and in substantial economic and material waste as well.
Progress has been made through the employment of ultrasonic or sonographic or fluorographic equipment. Sonographic equipment is capable of mapping interior surfaces of cavities and tissue structures without unduly invasive or incisive intrusion, and generally without the necessity of piercing or cutting the patient. Moreover, sonographic equipment can survey the thickness and echogenicity of tissue structures such as the endometrium. But none of the sonographic attempts made so far have provided safe, economic, efficient, or accurate means for examining and removing biopsy samples and malignancies from the interior of body cavities, and especially multichambered cavities such as the human vagina and uterus.
Devices are known which combine biopsy devices with ultrasonic probes. Such combinations are shown in U.S. Pat. No. 4,576,175 to Epstein; U.S. Pat. No. 5,076,279 to Arenson et al; U.S. Pat. No. 5,398,690 to Batten et al.; and 5,596,991 to Tanaka. The devices taught by these references, however, each comprise a biopsy device integrally (and in most cases rigidly, i.e. non-rotatably) attached to a sonographic transducer. In the cases of Epstein, Arenson, and Tanaka, the biopsy devices are immovably attached to the transducer heads, while Batten allows some rotation of the biopsy device. But such devices are not satisfactory for use within the often curved, typically restricted spaces of multi-chambered cavities such as the uterus and vagina. The sheer bulk of the equipment precludes its use in many restricted cavities. Moreover, such apparatus is frequently unsatisfactory for use inside the body because the needle and transducer cannot be independently manipulated—either at all, or (as in the case of the Batten device) to any adequate extent: the biopsy device being fixed to the transducer head, the ne
Garrison David L.
Garrison & Assoc. PS
Imam Ali M.
LandOfFree
Method and apparatus for sonographic examination, biopsy,... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for sonographic examination, biopsy,..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for sonographic examination, biopsy,... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3110062