Method and apparatus for solid state molecular analysis

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S024300, C204S400000, C204S403060, C204S412000, C435S006120, C435S091100, C530S300000, C530S350000

Reexamination Certificate

active

06573369

ABSTRACT:

BACKGROUND
Interactions between molecules is a central theme in living systems. These interactions are key to myriad biochemical and signal transduction pathways. Messages from outside a cell travel along signal transduction pathways into the cell's nucleus, where they trigger key cellular functions. Such pathways in turn dictate the status of the overall system. Slight changes or abnormalities in the interactions between biomolecules can effect the biochemical and signal transduction pathways, resulting in inappropriate development, cancer, a variety of disease states, and even cell senescence and death. On the other hand, it can be extremely beneficial to develop reagents and effectors that can inhibit, stimulate, or otherwise effect specific types of molecular interactions in biochemical systems; including biochemical and signal transduction pathways. Reagents and effectors that effect nucleus interactions may often become very powerful drugs which can be used to treat a variety of conditions.
Current Technology
Several recent studies have shown that a scanning probe microscope “SPM” may be used to study molecular interactions by making a number of measurements. The SPM measurements may include changes in height, friction, phase, frequency, amplitude, and elasticity. The SPM probe can even perform direct measurements of the forces present between molecules situated on the SPM probe and molecules immobilized on a surface. For example, see Lee, G. U., L. A. Chrisey, and R. J. Colton,
Direct Measurement of the Forces Between Complementary Strands of DNA
. Science, 1994. 266: p. 771-773; Hinterdorfer, P., W. Baumgartner, H. J. Gruber, and H. Schindler,
Detection and Localization of Individual Antibody antigen Recognition Events by Atomic Force Microscopy
, Proc. Natl. Acad. Sci., 1996. 93: p. 3477-3481; Dammer, U., O. Popescu, P. Wagner, D. Anselmetti, H.-J. Guntherodt, and G. N. Misevic,
Binding Strength Between Cell Adhesion Poteoglycans Measured by Atomic Force Microscopy
. Science, 1995. 267: p. 1173-1175; Jones, v. et al.
Microminiaturized Immunoassays Using Atomic Force Microscopy and Compositionally Patterned Antigen Arrays
, Analy. Chem., 1998 70(7): p. 1233-1241; and Rief, M., F. Oesterhelt, B. Heymann, and H. E. Gaub,
Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy
, Science, 1997. 275: p. 1295-1297. The above studies illustrate that it is possible to readily and directly measure the interaction between and within virtually all types of molecules by utilizing an SPM. Furthermore, recent studies have shown that it is possible to use direct force measurement to detect changes in molecular complex formation caused by the addition of a soluble molecular species. A direct force measurement may elucidate the effect of soluble molecular species on the interaction between a molecular species on an SPM probe and a surface.
Molecular Arrays
The ability to measure molecular events in patterned arrays is an emerging technology. The deposition material can be deposited on a solitary spot or in a variety of sizes and patterns on the surface. The arrays can be used to discover new compounds which may interact in a characterizable way with the deposited material. Arrays provide a large number of different test sites in a relatively small area. To form an array, one must be able to define a particular site at which a deposition sample can be placed in a defined and reproducible manner.
There are four approaches for building conventional molecular arrays known in the art. These prior art methods include 1) mechanical deposition, 2) in situ photochemical synthesis, 3) “ink jet” printing, and 4) electronically driven deposition. The size of the deposition spot (or “domain”) is of particular importance when utilizing an SPM to scan for molecular recognition events. Current SPM technology only allows a scan in a defined area. Placing more domains in this defined area allows for a wider variety of molecular interaction events to be simultaneously tested.
Mechanical deposition is commonly carried out using a “pin tool” device. Typically the pin tool is a metal or similar cylindrical shaft that may be split at the end to facilitate capillary take up of liquid. Typically the pin is dipped in the source and moved to the deposition location and touched to the surface to transfer material to that domain. In one design the pin tool is loaded by passing through a circular ring that contains a film of the desired sample held in the ring by surface tension. The pin tool is washed and this process repeated. Currently, pin tool approaches are limited to spot sizes of 25 to 100 microns or larger. The spot size puts a constraint on the maximum density for the molecular deposition sites constructed in this manner. A need exists for a method that allows for molecular domains of smaller dimensions to be deposited.
In situ photochemical procedures allow for the construction of arrays of molecular species at spatial addresses in the 1-10 micron size range and larger. In situ photochemical construction can be carried out by shining a light through a mask. Photochemical synthesis occurs only at those locations receiving the light. By changing the mask at each step, a variety of chemical reactions at specific addresses can be carried out. The photochemical approach is usually used for the synthesis of a nucleic acid or a peptide array. A significant limitation of this approach is that the size of the synthetic products is constrained by the coupling efficiency at each step. Practically, this results in appreciable synthesis of only a relatively short peptide and nucleic acid specimen. In addition, it becomes increasingly improbable that a molecule will fold into a biologically relevant higher order architecture as the synthetic species becomes larger. A need exists for an alternative method for deposition of macromolecular species that will preserve the molecular formation of interest in addition to avoiding the cost of constructing the multiple masks used in this method.
Ink jet printing is an alternative method for constructing a molecular array. Ink jet printing of molecular species produces spots in the 100 micron range. This approach is only useful for printing a relatively small number of species because of the need for extensive cleaning between printing events. A key issue with ink jet printing is maintenance of the structural/functional integrity of the sample being printed. The ejection rate of the material from the printer results in shear forces that may significantly compromise sample integrity. A need exists for a method that will retain the initial structure and functional aspects of the deposition material and that will form smaller spots than are possible with the above ink jet method.
Electronic deposition is yet another method known for the construction of molecular arrays. Electronic deposition may be accomplished by the independent charging of conductive pads, causing local electrochemical events which lead to the sample deposition. This approach has been used for deposition of DNA samples by drawing the DNA to specific addresses and holding them in a capture matrix above the address. The electronic nature of the address can be used to manipulate samples at that location, for example, to locally denature DNA samples. A disadvantage of this approach is that the address density and size is limited by the dimensions of the electronic array.
A need exists for a molecular deposition technique that will allow for smaller deposition spots (domains). Smaller deposition domains allow for an array to be constructed with a greater density of domains. More domains further allow for a wider variety in the deposition material to be placed on the same array, allowing a user to search for more molecular interaction events simultaneously.
A further need exists for the ability to place these spots at a defined spatial address. Placing the domains at defined spatial addresses allows the user to know exactly what deposition material the SPM is scanning at any given ti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for solid state molecular analysis does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for solid state molecular analysis, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for solid state molecular analysis will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3163644

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.