Method and apparatus for shaping particles by ultrasonic...

Solid material comminution or disintegration – Processes – By operations other than force of contact with solid surface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C241S021000, C241S023000, C241S301000

Reexamination Certificate

active

06669122

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to method and apparatus for the ultrasonic shaping of particles, particularly of organic compounds, which permit to obtain by ultrasonic cavitation shaped particles having smooth and rounded surfaces. The method and apparatus can produce shaped particles of different sizes and can also grind the particles. Typical, but not exclusive, applications of the invention are the shaping of high explosives, solid propellants, and pharmaceuticals.
BACKGROUND OF THE INVENTION
The use of ultrasonic cavitation has been proposed in the microbiological and pharmaceutical field: thus McIntosh, A. F. and R. F. Munro, in “Ultrasonic Treatment of Microorganism,” Process Biochem 6 (3) 22-3, 37 (1971) and Gold D., in “Ultrasonic Sterilization of Pharmaceutical Preparations,” 1962, Thesis, University of Connecticut Storrs, Conn. 06268. Ultrasonic cavitation can produce the mechanical disruption of cell membranes.
Ultrasonic cavitation can also be used for grinding solid particulate materials, including even explosives and solid propellants. The state of the art in this respect is summarized in U.S. Pat. No. 5,035,363, the content of which is herein included by reference. One of the known processes for grinding explosives and solid propellants is wet grinding, viz. grinding of a slurry of a solid material in a liquid; and a particular form of wet grinding is ultrasonic grinding, in which a slurry of a solid material in a liquid is subjected to ultrasonic vibrations.
U.S. Pat. No. 5,035,363 discloses an ultrasonic grinding process, which includes suspending the particles to be ground in a liquid to form a slurry and subjecting the slurry to ultrasonic energy at a frequency or frequencies in the range of about 14 to 60 KHz. The liquid medium of the slurry must be inert, viz. not reactive chemically with the explosive material being ground, and must also be a non-solvent as regards said material. The preferred slurry liquid is water or other aqueous liquid medium. The explosives mentioned in said application are cyclotrimethylenetrinitramine (RDX), tetramethylenetetranitramine (HMX) and a mixture of RDX and HMX known as co-produced explosive (CPX).
The apparatus disclosed in said patent comprises an ultrasound generator, including a transducer and a sonic converter, which imparts ultrasonic vibrations to the tip of a disrupter horn. A vessel is provided, into which flows an input stream of a slurry containing the unground explosive particles and out of which flows an output stream of the slurry containing the ground explosive particles. The tip of the disruptor horn is submerged in the slurry and is located so that all particles passing through the apparatus are subjected to a high intensity ultrasonic field below the tip, where the primary acoustic cavitation occurs, the stream of ground particles flowing through an orifice located immediately below the tip of the horn and therefrom to the apparatus outlet. In said patent, however, no consideration is given to the shape of the ground particles and rounded particles are not obtained.
An attempt to improve the crystal shape and surface smoothness of particles of RDX, without changing their size, is described by A. van der Steen et al, in “Crystal Quality and Less Sensitive Explosives,” a paper presented at the “Insensitive Munitions Technology Symposium,” Jun. 16-18, 1992, Williamsburg, Va. The Authors treated spheroidized RDX particles with saturated acetone and then with unsaturated acetone or ethyl acetate. Smoother surfaces and flattened crystal shapes were thus obtained.
Experience has shown that the shape of the particles is of the highest importance, and more precisely, it is highly desirable that the ground particles have smooth surfaces and a generally rounded shape, approaching a spherical shape. A rounded shape improves the flowability of the particles when they are used in composite paste materials. It permits better packaging, increasing the amount of material that can be packaged in a given space, e.g. providing more solid loading of powder in explosives, solid propellants and other particulate material.
It is a purpose of this application to provide a shaping method and apparatus that permit to shape solid, particulate materials, preferably of organic compounds, in such a way as to obtain particles that have smooth and rounded surfaces and approach a spherical shape.
It is another purpose of this invention to provide such a shaping method and apparatus that are particularly suited for shaping high explosives, solid propellants, or solid pharmaceutical preparations.
It is a further purpose of this invention to provide such a shaping method and apparatus which produce powders of improved flowability and packaging properties.
It is a still further purpose of this invention to provide such a shaping method that is efficient and of limited cost.
It is a still further purpose of this invention to provide such a shaping method that does not produce an uncontrolled reduction of the size of the particles.
It is a still further purpose of the invention to provide such a method and apparatus which, when applied to the shaping of explosives, are secure and do not generate temperatures which exceed a safe limit.
It is a still further purpose of this invention to achieve the aforesaid purposes by a method and apparatus which are simple and inexpensive.
Other purposes and advantages of the invention will appear as the description proceeds.
SUMMARY OF THE INVENTION
The shaping method of the invention comprises forming a raw slurry, viz. a slurry of the starting, particulate material, in a liquid which is a partial solvent of said material, and submitting the slurry to treatment by ultrasound generators to produce therein ultrasonic vibrations which shape the starting, particulate material to produce a shaped slurry. “Shaped slurry” means herein a slurry of shaped, viz. rounded, near spherical, ground particles.
It is known that the generation of a high frequency, ultrasonic vibration field in liquids results in cavitation and in the production of high local pressures. The high pressure in the cavities, near the particles suspended in the partial solvent, normally produces a grinding effect, sharply reducing the particles size, as is taught in the prior art. Surprisingly it has been found that in the process and apparatus of this invention ultrasonic vibrations in the appropriate liquid produce a shaping effect, imparting to the particles a rounded, near spherical configuration. The shaping is accompanied by a grinding effect, viz. a reduction of the particles size. Whether the shaping or the grinding effect is predominant, depends on the frequency of the vibrations, on the energy density, on the type of the liquid and on the properties of the material, viz. whether it is easy or hard to grind. Higher frequencies increase the shaping effect. While the frequencies used in the method according to the invention are preferably from 20 KHz to 50 KHz, shaping is generally predominant at frequencies above 40 KHz, and grinding is generally predominant at frequencies below 25 KHz. Between 25 KHz and 40 KHz, both effects are present in varying ratios.
The shaped particles can be separated from their slurry by removing the partial solvent, by means appropriate to the particular partial solvent and to the material of the particles, which can include decantation and/or filtration.
By “partial solvent” is meant a liquid, typically water or a liquid comprising or consisting of an organic compound, in which the material to be ground-shaped has a solubility comprised between 1 and 10, wherein the solubility is expressed as grams of material that are dissolved in 100 ml of the liquid at a temperature of 20° C. Examples of such partial solvents are organic solvents such as acetone, methyl ethyl ketone, and mixtures of said solvents with one another or other solvents and/or a minor—less than 10 wt %—amount of water.
Preferably, the partial solvent used should have a boiling point from 40° to 100° C.
It is generally preferred to

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for shaping particles by ultrasonic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for shaping particles by ultrasonic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for shaping particles by ultrasonic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3158102

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.