Method and apparatus for serving files to browsing clients

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C705S014270, C709S236000, C713S152000

Reexamination Certificate

active

06826565

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to serving signals to browsing clients, wherein said signals represent commands executable by said browsing clients for generating structured pages of human viewable data.
2. Related Art
The serving of human viewable data in response to client requests has been known for some years in the field of cable television systems. Star type systems in particular allow viewers to make selections resulting in remote switching being performed so as to route a selected signal from a distribution head to the requesting viewer. Cable television systems are usually based on standard broadcast television signals and, as a result, a substantial transmission bandwidth is required in order to provide each viewable page of data. Recently, attempts have been made to compress video data, by implementing recommendations using standards such as MPEG, so as to facilitate the distribution of video signals over channels of substantially less bandwidth. Thus, it is now possible to transmit low quality video signals over conventional telephone lines using temporal and spatial compression techniques.
It has also been possible to distribute human viewable data in the form of encoded text for a number of years. The transmission of text, often using ASCII coding, requires substantially less bandwidth than the transmission of video signals and for a number of years data of this type has been transmitted over conventional telephone cables.
A problem with transmitting conventional data text, compared to image related video signals, is that the quality of presentation and overall graphical format is significantly impaired. For this reason, traditionally, the transmission of data, as distinct from video, has tended to develop only in specialist fields where presentation was not considered particularly important. Very often, for example, the data being received would be considered as being quite valuable and very often it would be possible to justify the re-typing of information as and when required.
A further problem with the dissemination of data is that many standards and conventions have developed over the years. Therefore, traditionally, users have needed to develop techniques for accessing different data sources, which in itself has tended to become a specialist activity.
In parallel with the tendency towards bandwidth reduction in the transmission of video signals, there has also been a tendency towards improving the graphical format, structure and presentation of what would normally be considered as textural data. Thus, although data may be transmitted within a text-based environment, such as within the internationally accessible network known as the “Internet”, there has been a tendency towards including formatting structures such that a substantially data-driven source could be viewed by a user on equipment which would present the data in a form substantially similar to that of a video image. Thus, the two arts of video signal processing and image data processing are coming closer together and reaching towards a common aim of providing what appears to be a high resolution, high bandwidth, high quality image by transmitting data over low bandwidth transmission media.
For a number of years, cable television systems have been used to provide in-home shopping facilities and, given their two-way capabilities, it is possible to install a level of interactivity within such systems. On-line systems facilitate a higher level of interactivity and, in addition to making particular selections in response to images being broadcast, it is also possible to select particular image pages by browsing through catalogues and tree structures etc. Thus, given an ability to display high quality images, similar to those available through video based systems, on-line systems present environments with substantially more interactive capabilities. However, it is appreciated that in many of these environments the quality of images must be significantly enhanced in order to attain a broad customer base.
A known way of improving the quality of images derived from text-based systems is to add formatting commands or instructions to data strings. These instructions control operations of a receiver, such that the signals are processed in such a receiver, to ensure that the transmitted signals are processed in such a way as to generate a high quality video image that is capable of being displayed at a requesting client's terminal.
In addition to improving the quality of displayed images, such an approach also facilitates an improvement in system compatibility. Thus, the incoming control signals are executed by a receiver's terminal in a way that is compatible with the receiving system. Thus, the output signals may be considered as executable instructions that cause operations to be performed upon the viewable data in accordance with the local constraints.
Thus, the use of systems of this type must be distinguished from simple local database systems in which all operations of the system are locally controlled and no account whatsoever needs to be taken of remote facilities and characteristics. Such systems are significantly different in that database systems only transfer data that is subsequently manipulated by controlling programs. In mark-up languages the formatting commands are embedded in the form of executable commands, executable at the receiving station, so as to perform operations upon the viewable data supported by the local platform and peripherals.
Mark-up languages of this type may also include other capabilities previously not found in simple data distribution systems. In particular, a highly valued additional feature is the ability to automatically receive additional files from anywhere within the overall network. Such a procedure is possible because, as previously stated, the mark-up language is effectively executed by the local platform and these executable procedures may include procedures for making external calls to files held anywhere within the accessible network.
From a user's point of view, such links may be considered as providing a level of multi-dimensionality within a viewable document in that a particular word or phrase may be selected, whereafter an expansion is provided or related documents are identified. In order to distinguish such documents from ordinary self-contained documents, text of this type is commonly referred to as “hypertext”. Similarly, such links may also be made to full motion video sequences or audio sequences etc. and such an environment may be referred to as “hypermedia”.
An example of a particular recommendation under which signals include commands executable by browsing clients is the “hypertext mark-up language” (HTML) developed at CERN during the late 1980s and early 1990s, which has recently become a part of the Internet through a service known as the “World Wide Web”. An (HTML) file is essentially an ASCII document interspersed with tags for formatting text and displaying images. The tags graphically represent instructions which are acted upon by a receivers browser, configured to render text or graphics. The browser has full control of how the page is displayed, therefore it is possible to generate a wide range of page lay-outs from a modest set of (HTML) tags.
The Internet is an extreme example of a network in which many different types of platforms, having various protocols and processing capabilities, may be interconnected using highly distributed control instruction sets. As previously suggested, systems of this type often provide an environment in which a user may “browse” through many files and structures. Consequently environments to facilitate the reception and conversion of HTML files are commonly known as “browsers”. Thus, a browser is an application capable of interpreting and displaying documents received in HTML in such a way that the information is displayed to the user in a form compatible with the user's available equipment. Thus, using sophisticated terminal equipm

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for serving files to browsing clients does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for serving files to browsing clients, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for serving files to browsing clients will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3334714

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.