Method and apparatus for selectively targeting specific...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving fixed or stabilized – nonliving microorganism,...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S007100, C435S029000

Reexamination Certificate

active

06514722

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to methods and apparatus for selectively targeting specific cells within a population of living cells. In particular, this invention relates to high-speed methods and apparatus for selectively identifying, and individually targeting with an energy beam, specific cells within a cell population to induce a response in the targeted cells.
2. Description of the Related Art
The use of cellular therapies is growing rapidly, and is therefore becoming an important therapeutic modality in the practice of medicine. Unlike other therapies, cellular therapies achieve a long-lasting, and often permanent benefit through the use of living cells. Hematopoietic stem cell (HSC) (e.g., bone marrow or mobilized peripheral blood) transplantation is one example of a practiced, insurance-reimbursed cellular therapy. Many other cellular therapies are being developed, including immunotherapy for cancer and infectious diseases, chondrocyte therapy for cartilage defects, neuronal cell therapy for neurodegenerative diseases, and stem cell therapy for numerous indications. Many of these therapies require the removal of unwanted, detrimental cells for full efficacy to be realized.
Gene therapy is another active area of developing medicine that can influence the success of cellular therapy. Given the rapid advances in the understanding of the human genome, it is likely that many genes will be available for insertion into cells prior to transplantation into patients. However, obtaining efficient targeted delivery of genes into specific cells of interest has remained a difficult obstacle in the development of these therapies.
In the treatment of cancer, it has been found that high-dose chemotherapy and/or radiation therapy can be used to selectively kill rapidly dividing cancer cells in the body. Unfortunately, several other cell types in the body are also rapidly dividing, and in fact, the dose-limiting toxicity for most anti-cancer therapies is the killing of HSCs and progenitor cells in the bone marrow. HSC transplantation was developed as a therapy to rescue the hematopoietic system following anti-cancer treatments. Upon infusion, the HSCs and progenitor cells within the transplant selectively home to the bone marrow and engraft. This process is monitored clinically through daily blood cell counts. Once blood counts return to acceptable levels, usually within 20 to 30 days, the patient is considered engrafted and is released from the hospital.
HSC transplants have been traditionally performed with bone marrow, but mobilized peripheral blood (obtained via leukapheresis after growth factor or low-dose chemotherapy administration) has recently become the preferred source because it eliminates the need to harvest approximately one liter of bone marrow from the patient. In addition, HSCs from mobilized peripheral blood result in more rapid engraftment (8 to 15 days), leading to less critical patient care and earlier discharge from the hospital. HSC transplantation has become an established therapy for treating many diseases, such that over 45,000 procedures were performed worldwide in 1997.
HSC transplantation may be performed using either donor cells (allogeneic), or patient cells that have been harvested and cryopreserved prior to administration of high-dose anti-cancer therapy (autologous). Autologous transplants are widely used for treating a variety of diseases including breast cancer, Hodgkin's and non-Hodgkin's lymphomas, neuroblastoma, and multiple myeloma. The number of autologous transplants currently outnumbers allogeneic transplants by approximately a 2:1 ratio. This ratio is increasing further, mainly due to graft-versus-host disease (GVHD) complications associated with allogeneic transplants. One of the most significant problems with autologous transplants is the reintroduction of tumor cells to the patient along with the HSCs, because these tumor cells contribute to relapse of the original disease.
As a tumor grows, tumor cells eventually leave the original tumor site and migrate through the bloodstream to other locations in the body. This process, called tumor metastasis, results in the formation and growth of satellite tumors that greatly increase the severity of the disease. The presence of these metastatic tumor cells in the blood and other tissues, often including bone marrow, can create a significant problem for autologous transplantation. In fact, there is a very high probability that metastatic tumor cells will contaminate the harvested HSCs that are to be returned to the patient following anti-cancer therapy.
The presence of contaminating tumor cells in autologous bone marrow and mobilized peripheral blood harvests has been confirmed in numerous scientific studies. Recent landmark studies have unambiguously shown that reinfused tumor cells do indeed contribute to disease relapse in humans (Rill et al. 1994). This was proven by genetically marking the harvested cells prior to transplant, and then showing that the marker was detected in resurgent tumor cells in those patients who relapsed with disease. These data have been confirmed by other investigators (Deisseroth et al. 1994), indicating that contaminating tumor cells in HSC transplants represent a real threat to patients undergoing autologous transplantation.
Subsequent detailed studies have now shown that the actual number of tumor cells reinfused in the transplant was correlated with the risk of relapse for acute lymphoblastic leukemia (Vervoordeldonk et al. 1997), non-Hodgkin's lymphoma (Sharp et al. 1992; Sharp et al. 1996), mantle cell lymphoma (Andersen et al. 1997), and breast cancer (Brockstein et al. 1996; Fields et al. 1996; Schulze et al. 1997; Vannucchi et al. 1998; Vredenburgh et al. 1997). One of these studies went even further, showing that the number of tumor cells infused was inversely correlated with the elapsed time to relapse (Vredenburgh et al. 1997). These data suggest that reducing the number of tumor cells in the transplant will lead to better outcomes for the patient.
Due to the known risk of tumor cell contamination in autologous transplantation, a number of methods have been proposed for removing contaminating tumor cells from harvested HSC populations. The basic principle underlying all purging methods is to remove or kill tumor cells while preserving the HSCs that are needed for hematopoietic reconstitution in the patient.
One such method utilized fluorescence-activated cell sorting (FACS) to sort HSCs from tumor cells (Tricot et al. 1995). As is known, flow cytometry sorts cells one at a time and physically separates one population of cells from a mixture of cells based upon cell surface markers and physical characteristics. However, it has been shown that using FACS to separate large cell populations for clinical applications is not advantageous because the process is slow, the cell yields can be very low, and purity greater than ~98% is rarely achieved.
Another method utilizing a flow cytometer is described in U.S. Pat. No. 4,395,397 to Shapiro. In the Shapiro method, labeled cells are placed in a flow cytometer, and a downstream laser beam is used to kill the labeled cells in the flowing stream after they pass by the detector and are recognized as being labeled by the electronic system. This method suffers from a number of disadvantages. Firstly, once an unwanted cell has passed through the detector/laser region there is no way to check that destruction has been completed successfully. If a tumor cell evades destruction it will inevitably be reintroduced into the patient. Secondly, the focal spot diameter of the laser beam is of necessity greater than the liquid stream cross section. Accordingly, many of the HSCs in the region of an unwanted cell will also be destroyed by the laser beam. Also, as described above, the purity obtained by flow cytometric techniques is not very good due to the random and dynamic nature of a heterogeneous cell mixture that is flowing in a fast-moving (1-20 m/sec) stream of liquid.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for selectively targeting specific... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for selectively targeting specific..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for selectively targeting specific... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3180249

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.