Method and apparatus for selectively targeting specific...

Chemistry: molecular biology and microbiology – Apparatus – Including measuring or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007200, C435S034000, C435S460000, C435S173500, C435S173700, C435S287200, C382S133000

Reexamination Certificate

active

06534308

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to methods and apparatus for selectively targeting specific cells within a mixed population of living cells. In particular, this invention relates to high-speed methods and apparatus for selectively identifying, and individually targeting with an energy beam, specific cells within a mixed cell population to induce a response in the targeted cells.
2. Description of the Related Art
The use of cellular therapies is growing rapidly, and is therefore becoming an important therapeutic modality in the practice of medicine. Unlike other therapies, cellular therapies achieve a long-lasting, and often permanent benefit through the use of living cells. Hematopoietic stem cell (HSC) (e.g., bone marrow or mobilized peripheral blood) transplantation is one example of a practiced, insurance-reimbursed cellular therapy. Many other cellular therapies are being developed, including immunotherapy for cancer and infectious diseases, chondrocyte therapy for cartilage defects, neuronal cell therapy for neurodegenerative diseases, and stem cell therapy for numerous indications. Many of these therapies require the removal of unwanted, detrimental cells for full efficacy to be realized.
Gene therapy is another active area of developing medicine that can influence the success of cellular therapy. Given the rapid advances in the understanding of the human genome, it is likely that many genes will be available for insertion into cells prior to transplantation into patients. However, obtaining efficient targeted delivery of genes into specific cells of interest has remained a difficult obstacle in the development of these therapies.
In the treatment of cancer, it has been found that high-dose chemotherapy and/or radiation therapy can be used to selectively kill rapidly dividing cancer cells in the body. Unfortunately, several other cell types in the body are also rapidly dividing, and in fact, the dose-limiting toxicity for most anti-cancer therapies is the killing of HSCs and progenitor cells in the bone marrow. HSC transplantation was developed as a therapy to rescue the hematopoietic system following anti-cancer treatments. Upon infusion, the HSCs and progenitor cells within the transplant selectively home to the bone marrow and engraft. This process is monitored clinically through daily blood cell counts. Once blood counts return to acceptable levels, usually within 20 to 30 days, the patient is considered engrafted and is released from the hospital.
HSC transplants have been traditionally performed with bone marrow, but mobilized peripheral blood (obtained via leukapheresis after growth factor or low-dose chemotherapy administration) has recently become the preferred source because it eliminates the need to harvest approximately one liter of bone marrow from the patient. In addition, HSCs from mobilized peripheral blood result in more rapid engraftment (8 to 15 days), leading to less critical patient care and earlier discharge from the hospital. HSC transplantation has become an established therapy for treating many diseases, such that over 45,000 procedures were performed worldwide in 1997.
HSC transplantation may be performed using either donor cells (allogeneic), or patient cells that have been harvested and cryopreserved prior to administration of high-dose anti-cancer therapy (autologous). Autologous transplants are widely used for treating a variety of diseases including breast cancer, Hodgkin's and non-Hodgkin's lymphomas, neuroblastoma, and multiple myeloma. The number of autologous transplants currently outnumbers allogeneic transplants by approximately a 2:1 ratio. This ratio is increasing further, mainly due to graft-versus-host disease (GVHD) complications associated with allogeneic transplants. One of the most significant problems with autologous transplants is the reintroduction of tumor cells to the patient along with the HSCs, because these tumor cells contribute to relapse of the original disease.
As a tumor grows, tumor cells eventually leave the original tumor site and migrate through the bloodstream to other locations in the body. This process, called tumor metastasis, results in the formation and growth of satellite tumors that greatly increase the severity of the disease. The presence of these metastatic tumor cells in the blood and other tissues, often including bone marrow, can create a significant problem for autologous transplantation. In fact, there is a very high probability that metastatic tumor cells will contaminate the harvested HSCs that are to be returned to the patient following anti-cancer therapy.
The presence of contaminating tumor cells in autologous bone marrow and mobilized peripheral blood harvests has been confirmed in numerous scientific studies. Tumor cell contamination has been repeatedly observed in patients with T-cell lymphoma, non-Hodgkin's lymphoma, leukemia, neuroblastoma, lung cancer, breast cancer, etc. (Brugger et al.
1994
; Gulati and Acaba 1993; Kvalheim et al. 1996; Mapara et al. 1997; Paulus et al.
1997
; Shpall and Jones 1994; Vervoordeldonk et al. 1997). In every study, all or nearly all of the patient samples analyzed were positive for tumor contamination. The level of tumor cell burden in these HSC harvests varied widely depending upon the type and stage of disease. Typical numbers indicate that tumor cells are present in the range of 3 to 3,000 tumor cells per million hematopoietic cells. Since the transplanted cell number is on the order of 10 billion hematopoietic cells, the total number of tumor cells in a transplant varies in the range of 30 thousand to 30 million. The reinfusion of this number of tumor cells in the HSC transplant following the patient's anti-cancer therapy is of considerable clinical concern. In fact, animal models have shown that as few as 25 leukemia cells can establish a lethal tumor in 50% of mice, and these numbers extrapolate to 3500 cells in humans (Gulati, Acaba 1993).
Recent landmark studies have unambiguously shown that reinfused tumor cells do indeed contribute to disease relapse in humans (Rill et al. 1994). This was proven by genetically marking the harvested cells prior to transplant, and then showing that the marker was detected in resurgent tumor cells in those patients who relapsed with disease. These data have been confirmed by other investigators (Deisseroth et al. 1994), indicating that contaminating tumor cells in HSC transplants represent a real threat to patients undergoing autologous transplantation.
Subsequent detailed studies have now shown that the actual number of tumor cells reinfused in the transplant was correlated with the risk of relapse for acute lymphoblastic leukemia (Vervoordeldonk et al. 1997), non-Hodgkin's lymphoma (Sharp et al. 1992; Sharp et al. 1996), mantle cell lymphoma (Andersen et al. 1997), and breast cancer (Brockstein et al. 1996; Fields et al. 1996; Schulze et al. 1997; Vannucchi et al. 1998; Vredenburgh et al. 1997). One of these studies went even further, showing that the number of tumor cells infused was inversely correlated with the elapsed time to relapse (Vredenburgh et al. 1997). These data suggest that reducing the number of tumor cells in the transplant will lead to better outcomes for the patient.
In fact, one clinical study of NHL purging in 114 patients showed that disease-free survival (after a median 2-year follow-up) was substantially higher (93%) in the subset of patients that had all detectable tumor cells purged prior to transplant, as compared with those in which purging was unsuccessful (54%) (Gribben et al. 1991). In a recent update of this study, eight-year freedom-from-relapse was shown to be 83% in the subset of patients that had all detectable tumor cells purged, as compared to 19% in patients where purging was unsuccessful (Freedman et al. 1999). Therefore, the actual number of tumor cells in an HSC transplant, and the ability to reliably purge them, are of significant and growing importance in the delivery of HSC transplantation therap

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for selectively targeting specific... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for selectively targeting specific..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for selectively targeting specific... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3074758

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.