Method and apparatus for sealing joints between components...

Seal for a joint or juncture – Process of static sealing – Forming in place

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C277S651000, C296S210000, C156S091000, C156S295000

Reexamination Certificate

active

06431549

ABSTRACT:

BACKGROUND
The present invention relates to methods and apparatus for sealing joints or gaps that exist between components of vehicles and has particular applicability to sealing joints between components against rain and the like from the exterior of a vehicle. For example, the invention has applicability to sealing a roof of a truck to sidewall and backwall structures of a truck.
In vehicles such as highway trucks which are exposed to severe weather conditions, it is desirable to have an efficient and effective mechanism and approach for sealing exposed joints of the truck against leakage of rain water and the like from the exterior of the truck. Horizontal joints that may exist between a roof component of a truck and walls of a truck are particularly susceptible to leakage and would especially benefit from an improved sealing approach. These trucks often have sleeper compartments or cabs that provide living space for drivers during long-haul operations. A manufacturer may have trucks with sleeper compartments of different sizes and configurations. For example, the sleeper compartment may be varied in length, along the longitudinal axis direction of the truck, for different truck models depending on factors such as how much space is to be provided for occupancy by individuals using the truck.
In one known approach, sealant is applied directly to an object to be sealed (e.g. onto a head gasket which is ready to be placed on an engine, onto the perimeter of a windshield prior to installation in a windshield opening, or directly to the upper portions of wall parts of a truck before a roof is assembled onto the wall parts. Commonly, a manually controlled tool such as a caulking gun is used to apply the sealant to the wall parts. In such a case, it is easy to over or under apply the quantity of the sealant. If sealant is over applied and the components are then brought together and fastened, the sealant may seep or be squeezed from the joint into undesired areas which then must be cleaned. If the sealant is under applied, unsealed gaps may be left in the joint. Also, in the case of a truck, this manual approach can slow down production time as the sealant is applied to the truck components as the truck components are being assembled in a truck assembly line.
In another known method of sealing roof and sidewall components of a vehicle, a foam and compression-limiting shim is positioned on wall components and between the components with the foam being compressed as the components are brought together. In this approach, the foam is adhesively backed on one side and is applied to the components without sealant being placed on the foam. It is also known in sealing building joints to place caulking or sealant between the joints with a foam strip along the exterior boundary of the joint. The foam strip acts as a dam to prevent the sealant from seeping out from the joint in the event, for example, the sealant warms and becomes less viscous due to sunlight hitting the building.
Although vehicles, including trucks, have existed for a long time with roofs and other components fastened in some manner together and with exterior joints of the trucks sealed in some manner, a need exists for an improved sealing system, apparatus, and method.
SUMMARY
In accordance with one aspect of an embodiment of the present invention, assume a first component of a vehicle is to be joined to a second component of a vehicle. In particular, the first component has a first component surface which is to be joined with a second component surface of a second component of the vehicle with a gap or joint therebetween. In accordance with the approach of this embodiment, sealant is applied to a first carrier surface of a porous sealant carrier member, the sealant carrier member having a second carrier surface which is opposed to the first carrier surface. By porous, it is meant that the sealant carrier member has sufficient porosity to permit the penetration or travel of sealant from the first carrier surface to the second carrier surface when pressure is applied to the sealant on the first carrier surface. In addition, in this embodiment, the viscosity of the sealant and the porosity of the sealant carrier member are preferably selected such that insignificant migration of sealant from the first carrier surface to the second carrier surface occurs prior to the application of pressure to sealant on the sealant carrier member. At least a portion of the first carrier surface containing sealant is placed in the gap between the first and second component surfaces. The gap is then closed so that at least a portion of the sealant carrier member containing the sealant is squeezed or compressed between the first and second component surfaces. This results in the application of pressure to the sealant on the first carrier surface. As a result, at least some of the sealant passes from the first carrier surface to the second carrier surface as the gap is closed. The sealant thus seals the gap. Closing of the gap may be accomplished in any convenient manner, such as by tightening bolts or other fasteners used to draw the first and second component surfaces toward one another. The first component may, for example, be a roof component of the vehicle and the second component may, for example, be a wall component of the vehicle.
The gap is typically an elongated gap. In this case, the sealant carrier members are typically elongated strips having first and second ends. The strips may be positioned end to end along a length of the gap with sealant being disposed to penetrate the sealant carrier strip typically along the full length of the strips to thereby seal the entire elongated gap.
The sealant may be applied non-uniformly to the first carrier surface of the sealant carrier member. The sealant may be applied as an elongated bead of sealant along at least a substantial portion of a length of a sealant carrier strip with the volume of the bead being selectively varied depending upon the location of the strip to which the bead is being applied. For example, a greater quantity of sealant may be applied at the respective ends of the strip, with about twice as much sealant being applied at such locations in one specific example. In the event a plurality of sealant strips are used to seal a gap, with the strips being arranged substantially end to end, the additional sealant at an end of a strip would flow into any space that may exist between adjacent strips to provide a seal at such locations. The strips are typically thin enough when compressed by closing the gap to not affect the operation of the seal even if the ends overlap one another. The sealant may also be applied in patterns other than an elongated sealant bead. For example, additional sealant may be applied in a cross or other pattern to fill and seal depressions, gaps or apertures in the surfaces which are being sealed.
In accordance with another aspect of an embodiment, the sealant carrier member may be positioned on a sealant carrier member support. In this case, the sealant carrier member is typically positioned with the first carrier surface exposed to receive the sealant. The sealant is typically applied while the sealant carrier member is carried or positioned on the support.
As a further aspect of an embodiment, the gap between the first and second components to be sealed may initially be sufficiently large to permit the initial positioning of the support and the sealant carrier member with the applied sealant in the gap. The support may be manipulated to bring the first carrier surface and sealant thereon into contact with one of the component surfaces, such as the first component surface. The sealant is typically somewhat tacky and consequently sticks to the first component surface. The support may then be removed. The sealant carrier member is detachably positioned on the support. The sealant carrier member is detached from the support and remains adhered by the sealant to the first component surface as the support is removed. This leaves the sealant carrier member in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for sealing joints between components... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for sealing joints between components..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for sealing joints between components... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2906906

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.