Adhesive bonding and miscellaneous chemical manufacture – Surface bonding means and/or assembly means therefor – Envelope sealing type
Reexamination Certificate
2000-09-28
2003-04-29
Crispino, Richard (Department: 1734)
Adhesive bonding and miscellaneous chemical manufacture
Surface bonding means and/or assembly means therefor
Envelope sealing type
C156S442100, C156S442200, C053S131200
Reexamination Certificate
active
06554956
ABSTRACT:
FIELD OF THE INVENTION
The present invention is related to the moistening of envelope flaps without the need to separate the flap from the body of the envelope. Previously, it was necessary to create an open space between a gummed or glue coated flap and the envelope body in order to apply a moisturizing agent or sealant prior to sealing envelopes. The present invention eliminates that requirement to create a gap or open space in order to moisten the flap of envelopes.
BACKGROUND OF THE INVENTION
This invention is generally concerned with envelope-processing machines or equipment that moisten and seal envelope flaps. Such equipment may include as a minimum, apparatus and components used to moisten the glued or gummed flaps of envelope stock. An example of the type of machine where this part of the process is usually desired is a mailing machine. The invention is particularly aimed at handling of mail, or envelopes that may be supplied for processing in one of three different flap configurations involving orientation or position of the flap. Those flap configurations are namely closed and sealed, unsealed open flap, and unsealed closed flap. These different configurations are sometimes a matter of preference of an operator in that they are loaded into the machine in one of the three configurations. Other preferences may be desirable, including one where all envelopes are mixed together with the flaps oriented in different directions. The present invention is directed to moistening the flaps of all three flap configurations where moistening an envelope flap while the flap is closed without the need to have the glued flap directly contacted by a moistening device, which is done in the prior art.
In each flap configuration, the envelopes are positioned for processing that includes feeding them through the machine, moistening the flap, and sealing them. The result is a piece of mail formed from the sealed envelope that will be printed with a postal indicia or address. Up to the present time, mailing equipment operators have often been forced to hand separate the envelopes into separate piles of sealed closed flap, unsealed with open flap, and unsealed closed flaps. This separation process is usually necessary with some mailing equipment currently available in the field because the equipment is not able to process all three-flap configurations with a single set-up. Therefore, an adjustment of the equipment is often required before each of the different envelope flap configurations can be processed. The present invention will solve this problem since it will no longer be necessary to segregate the envelopes or mail prior to feeding them through the processing equipment.
One exception to the foregoing regarding the state of the art lies in a line of mailing equipment manufactured by Pitney Bowes Inc. of Stamford Conn. In this equipment a design is seen where it is presently possible to separate, feed, moisten, and seal mixed types of envelopes in one machine without multiple set-up requirements. An example of how this is done may be seen in the Paragon ® Model Mailing Machine, manufactured by Pitney Bowes Inc. In the Paragon ® equipment, a supply of mixed sizes of envelopes may be placed into the feed hopper from where they are separated using a separation and feeding device. The flaps of each envelope are stripped, or separated from the body of the envelope, the flap is measured for its individual shape or profile, and then eventually the flap is moistened, or not, depending on the operator's needs. After moistening, it is usually necessary to seal the flap to the body of the envelope, and a sealing device is arranged just downstream of the moistener to do this.
The problems encountered with feeding different types of envelopes in such equipment is well known in the typical mail room facility. Specific problems dealing with jams caused by feeding envelopes or mail with open or closed flaps is well known. Open flapped envelopes can be the easiest to handle, since a guide member or guide blade will guide the flap and strip it as the envelope progresses along the mailing equipment feed path. The open flapped envelopes are loaded into the machine at the input end of the machine with the flaps lying generally perpendicular with respect to the body of the envelope. An example of this type of mail processor may be seen in U.S. Pat. No. 4,730,821 to Fluckiger. With this design, the water or sealant is eventually applied to the gummed area of the envelope by belts, brushes, pads, spray and so forth, before being forcibly closed and sealed by another sealing apparatus located downstream in the machine.
Different envelope flap configuration or orientation, especially with a mixed envelope situation can cause feeding problems. The flaps may become stuck or jammed at the stripper blades located in the envelope feed path for example. And, there is a special problem developed when feeding closed, sealed envelope through the equipment having these stripper blades. The blades may attempt to open the previously closed seal, and in so doing will jam at the stripper blade. The typical stripper blade is designed to open any envelope moving towards the moistening system, and invariably the blade will cause a jam when encountering a sealed flap. This is a problem the present invention solves since no stripping blade is required as will be evident in the following specification.
Yet another flap configuration involves those envelopes that are loaded into the machine with the flap unsealed lying parallel or nearly so with respect to the envelope body. The flap is usually tucked beneath the body, and then when reaching the stripper blade, forced opened. An example of this may be seen in U.S. Pat. No. 5,217,551 to Noble et al. This patent is another example where in mailing equipment, the moistening system must open the flap slightly to allow for a brush or pad to wet the gummed inside flap area, and then re-close the flap in a following sealing mechanism downstream of the moistening apparatus. It is difficult to design the stripper blade and accompanying wetting members to insure there is sufficient sealant to cover the entire length of the gummed portion of the envelope flap. And, the stripper blade itself must be designed in the shape of the gap to be opened, which is a difficult part to manufacture. There are many different designs of stripper blades and associated components. These designs are all seen in the prior art as they are used to accomplish the flap moistening process. These designs often have many parts involved that have to be serviced due to wear and tear as a result of the repeated contact with the glue on the envelopes and mail. The present invention will solve this problem since there will be reduced supporting components necessary to moisten the flaps, as will be seen in the following description.
A further complication exists in the prior art in related equipment where the envelopes are loaded into the machine in a mixed flap configuration. There must be various sensing devices incorporated into the machine in this case. The sensors must be used to determine what configuration or attitude each envelope flap is prior to or during processing in the equipment. The moistening systems of the prior art typically are designed to process a separated or open flap so that downstream apparatus including the moistening device may be employed. The problem with handling such mixed mailing type envelopes become apparent when it is recognized that there is a very large design spectrum for manufactured envelopes. The envelopes and flaps may be of all sizes, and shapes in many combinations. Therefore, the envelope processing equipment designed to handle this situation becomes quite complicated in anticipation of how each type of envelope must be recognized, and processed using special mechanisms, or apparatus to avoid jams in the machine. The very physical attributes of these mechanisms may themselves cause jams along any part of the feed path of the machine. And, the very nature of having to perform
Dolan Donald T.
Nagarsheth Pushpavadan S
Capelli Christopher J.
Chaclas Angelo N.
Crispino Richard
Pitney Bowes Inc.
Purvis Sue A.
LandOfFree
Method and apparatus for sealing closed envelopes does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for sealing closed envelopes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for sealing closed envelopes will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3048895