Pulse or digital communications – Cable systems and components – Transformer coupling
Reexamination Certificate
1999-12-30
2002-10-01
Le, Amanda T. (Department: 2634)
Pulse or digital communications
Cable systems and components
Transformer coupling
C375S349000, C379S416000, C333S012000
Reexamination Certificate
active
06459739
ABSTRACT:
FIELD THE INVENTION
The present invention relates generally to high-speed data communications over telephone cables, and specifically to methods and systems for rejection of radio frequency (RF) noise in Digital Subscriber Line (DSL) modems.
BACKGROUND OF THE INVENTION
Digital Subscriber Line (DSL) is a modem technology that enables broadband digital data to be transmitted over twisted-pair wire. This is the type of infrastructure that links most home and small business subscribers to their telephone service providers. DSL modems enable users to access digital networks at speeds tens to hundreds of times faster than current analog modems and basic ISDN service. DSL thus opens the most critical bottleneck in local-loop access to high-speed networks, such as Asynchronous Transfer Mode (ATM) and Internet Protocol (IP) networks, without requiring major investments in new infrastructure. DSL systems use special line signals that are well-adapted to the characteristics of twisted-pair wire and to the noise that normally exists on telephone lines.
A range of DSL standards have been defined, known generically as “xDSL,” wherein the various standards have different data rates and other associated features but share common principles of operation. These standards include High-Speed DSL (HDSL), at relative low frequencies (<500 kHz); Asymmetric DSL (ADSL), with an intermediate frequency range (30-1100 kHz); and Very High Speed DSL (VDSL), in a high frequency range (0.3-20 MHz). VDSL modems support the highest possible bit rates on existing twisted-pair wire. Downstream bit rates of up to 50Mb/sec support such demanding services as video on demand. It is expected that in the near future, VDSL systems will come to dominate subscriber equipment on the telephone network.
One problem of VDSL implementation is that the frequency band of VDSL (up to 20 MHz) overlaps with several RF bands used for amateur radio and radio broadcast transmissions. To avoid interference between VDSL and RF systems, new standards propose that VDSL systems not transmit in RF bands assigned for radio use. But to avoid interference from existing RF systems, VDSL modems must be designed with reduced sensitivity to RF signals. Twisted-pair wire is particularly prone to picking up interference signals from external RF sources. This problem becomes more severe the higher the transmission frequency and can cause significant degradation of VDSL signals.
One method known in the art for rejection of RF interference signals is to use a common mode choke in the twisted-pair telephone line. The common mode choke attenuates RF noise by about 30 dB, but this attenuation is not enough for long cables, wherein the VDSL line signal is typically very small and the RF noise may be large.
Another method for decreasing sensitivity to RF interference is noise cancellation, as described, for example, in PCT Patent Application PCT/US97/06381, published as WO 97/40587, whose disclosure is incorporated herein by reference. This application describes a receiver system for high-speed data communications, such as ADSL or VDSL, having a RF noise canceller. The noise canceller adaptively estimates the radio frequency noise coming into the receiver through twisted pair input lines. The estimate is used to generate a noise cancellation signal, which is subtracted from the signals coming into the receiver. The noise estimate is based on a common-mode reference noise signal, which is sampled at a transformer that couples the input lines to the receiver. The preferred source of the common-mode signal is from a center tap on the input side of the transformer, taken with reference to a chassis ground. It is noted that the common-mode signal could alternatively be obtained from one of the input lines or from the sum of the lines with respect to ground.
The technical solution proposed by PCT/US97/06381 has several disadvantages which make its practical realization difficult. Existing communication standards require that the primary winding of the line transformer be isolated from chassis ground and from the secondary winding. The breakdown voltage of this isolation must be at least 1500 VAC. Therefore, a common mode reference noise signal from the center tap of the primary winding cannot be connected directly to the RF noise canceller, and an additional high-voltage transformer is required between the center tap of the line transformer and the RF noise canceller. A further difficulty with this solution is that it allows RF common mode noise to reach the primary winding of the line transformer without any attenuation. Because of inter-winding capacitance of the transformer, a strong noise signal arises on the secondary winding of transformer, as well. This noise signal can typically be cancelled by appropriate noise cancellation. But if a digital noise canceller is to be used (generally the most practical solution), the high input noise level makes it necessary to use a costly analog/digital (A/D) converter with high dynamic range.
SUMMARY OF THE INVENTION
It is an object of some aspects of the present invention to provide improved devices and methods for sampling common-mode signals.
It is a further object of some aspects of the present invention to provide an improved circuit and method for noise cancellation in a high-speed data receiver.
In preferred embodiments of the present invention, a common-mode choke, used at the input to a high-speed data receiver, has three windings on a common core. The receiver typically comprises a DSL receiver. Two of the windings, termed herein signal windings, are coupled in series with respective input lines carrying an input signal to the receiver. The signal windings are wound together in parallel, preferably using bifilar wire, so as to present a high effective impedance to common-mode RF interference on the input lines, while presenting a low effective impedance to a differential signal between the input lines. The choke thus attenuates the RF interference relative to the signal. The third winding, termed herein a sampling winding, samples the RF common-mode interference on the line. The sampled RF interference is used by a noise cancellation circuit in the receiver to estimate and subtract out interference remaining in the input signal following the choke.
The three-winding choke of the present invention thus provides two stages of interference suppression in a single device: a first stage of attenuation by the high common-mode impedance of the choke itself, and a second stage of RF noise suppression by the noise cancellation circuit. It thus provides superior attenuation of RF interference, without the need for a resistive tap off the input lines to the receiver, as is used in noise cancellation circuits known in the art, such as that described in the above-mentioned PCT patent application. Therefore, it also eliminates the requirement that the sampled common-mode interference signal be referred to ground, and protects the noise cancellation circuit from high-voltage surges.
In some preferred embodiments of the present invention, the high-speed data receiver is used in a DSL modem, most preferably in a VDSL modem. It will be appreciated, however, that the principles of the present invention may similarly be applied to high-speed data receivers of other types.
There is therefore provided, in accordance with a preferred embodiment of the present invention, a receiver for high-speed data communications, which is adapted to receive a differential signal through a pair of signal lines, the receiver including:
a common-mode choke, including:
first and second signal windings, which are configured to be respectively coupled in series to the pair of signal lines so as to attenuate common-mode interference in the differential signal; and
a sampling winding, which is inductively coupled to the signal windings so as to generate a sampled signal responsive to current flowing in the signal windings; and
signal processing circuitry, which is coupled to receive the sampled signal from the sampling winding and to receive the dif
Abelman ,Frayne & Schwab
Le Amanda T.
Tioga Technologies Inc.
LandOfFree
Method and apparatus for RF common-mode noise rejection in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for RF common-mode noise rejection in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for RF common-mode noise rejection in a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2998308