Method and apparatus for retrieving service task lists from...

Data processing: financial – business practice – management – or co – Automated electrical financial or business practice or... – Health care management

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S300000, C709S219000, C705S002000

Reexamination Certificate

active

06832199

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the field of medical diagnostic and imaging systems. More particularly, the invention relates to a diagnostic system having a user interface which facilitates maintenance, repair and upgrading of the diagnostic system by a service provider.
BACKGROUND OF THE INVENTION
Medical diagnostic and imaging systems are ubiquitous in modern health care facilities. Such systems provide invaluable tools for identifying, diagnosing and treating physical conditions and greatly reduce the need for surgical diagnostic intervention. In many instances, final diagnosis and treatment proceed only after an attending physician or radiologist has complemented conventional examinations with detailed images of relevant areas and tissues via one or more imaging modalities.
Currently, a number of modalities exist for medical diagnostic and imaging systems. These include computed tomography (CT) systems, x-ray systems (including both
2
Q conventional and digital or digitized imaging systems), magnetic resonance (MR) systems, positron emission tomography (PET) systems, ultrasound systems, nuclear medicine systems, etc. In many instances, these modalities complement one another and offer the physician a range of techniques for imaging particular types of tissue, organs, physiological systems, etc. Health care institutions often arrange several such imaging systems at a single or multiple facilities, permitting its physicians to draw upon such resources as required by particular patient needs.
Modern medical diagnostic systems typically include circuitry for acquiring image data and for transforming the data into a useable form, which is then processed to create a reconstructed image of features of interest within the patient. The image data acquisition and processing circuitry is sometimes referred to as a “scanner” if physical or electronic scanning occurs as part of the imaging process. The particular components of the system and related circuitry, of course, differ greatly between modalities due to their different physics and data processing requirements.
Medical diagnostic systems of the type described above are often called upon to produce reliable and understandable images within demanding schedules and over a considerable useful life. To ensure proper operation, the systems are serviced regularly by highly trained personnel who address imaging problems, configure and calibrate the systems, and perform periodic system checks and software updates. Moreover, service offerings have been supplemented in recent years by service centers capable of contacting scanners at subscribing institutions directly without the need for intervention on the part of the institution personnel. Such centralized servicing is intended to maintain the diagnostic systems in good operational order without necessitating the attention of physicians or radiologists, and is often quite transparent to the institution.
In certain centralized servicing systems, a computerized service center may contact a scanner via a network to check system configurations and operational states, to collect data for report generation, and to perform other useful service functions. Such contacts can be made periodically, such as during system “sweeps”, in which a variety of system performance data is collected and stored with historical data for the particular scanner. The data can then be used to evaluate system performance, propose or schedule visits by service personnel, and the like.
While such service techniques have proven extremely valuable in maintaining diagnostic systems, further improvements are still needed. For example, in conventional service systems, contact between the scanners and a centralized service center most often originates with the service center. The scanners are provided with only limited functionality in the ability to identify and define service needs. Even where the scanners have permitted some limited ability to contact networked service providers, intermittent conditions indicative of a potentially serviceable problem may cease by the time the service provider is contacted or recontacts the scanner after a service call. Moreover, although the transparency of interactions between scanners and service centers avoids distracting medical personnel with service updates unnecessarily, some degree of interaction between service centers and institutions is highly desirable. In particular, an interactive service system facilitates valuable exchanges of information, including reports of system performance, feedback on particular incidents requiring attention, updates of system licenses, software, imaging protocols, etc. Currently available service systems permit such interactive exchanges. In particular, a platform has been developed that serves as a base for the interactive servicing needs of different modalities. This platform allows a central service center to exchange information on possible service problems with remotely located scanners, and to retrieve information or data log files from scanners for the purpose of servicing those scanners. One known platform provides a uniform interface permitting clinicians and radiologists to operate a variety of scanners in different modalities, and to report service issues for the scanners, via a uniform, intuitive format.
The known integrated user-interactive platform for servicing diagnostic equipment at remote locations may be configured in software, hardware, or firmware at the scanner or may be installed in a central operator's station linking several scanners in a medical facility. The user interface permits service requests to be generated prior to, during or subsequent to examinations executed on the diagnostic equipment. The user interface also permits service messaging, report generation and retrieval, etc. The user interface is preferably configured as a network browser, which also facilitates linking the scanner or the central facility control station to a network such as an intranet or internet. The same user interface may be integrated into scanners of different modalities, thereby further facilitating service requests and the like by operations personnel, without requiring the personnel to become reacquainted with diverse interfaces in a facility.
While the existing user-interactive platform provides the system user with the capability to send a service request to a service center for immediate assistance, the existing platform does not provide the ability for the end-user of diagnostic equipment to create an electronic worklist of non-emergency items the end-user would like a field engineer to address during the next scheduled on-site visit.
SUMMARY OF THE INVENTION
The present invention relates to medical diagnostic equipment which provides the equipment user with a facility for creating an electronic list of tasks (hereinafter “task list”) to be performed by a field engineer which do not require an emergency service call. In accordance with the preferred embodiment of the invention, this electronic task list resides in the medical diagnostic equipment (e.g., a scanner) and is created by the end-user interacting with a graphical user interface. In particular, the task list is created by the user interacting with a so-called “Task List” web page. At a minimum, the task list web page comprises fields for entry of task items. Preferably, the web page also has means for saving or deleting task items listed on the web page.
In accordance with the preferred embodiments of the invention, the task list is transmitted from the diagnostic system to a service center via a network. In accordance with one preferred embodiment, the task list is transmitted concurrently to the assigned field service engineer. In accordance with another preferred embodiment, the service center receives the task list and later transmits it to the assigned field service engineer, via the same network or via any other available communications channel, e.g., a facsimile or wireless communication. The transmission of the electronic tas

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for retrieving service task lists from... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for retrieving service task lists from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for retrieving service task lists from... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3298748

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.