Method and apparatus for reducing wear in an internal...

Internal-combustion engines – Lubricators – Crankcase – pressure control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C184S006400

Reexamination Certificate

active

06349692

ABSTRACT:

BACKGROUND-FIELD OF THE INVENTION
The present invention relates to internal combustion engines, and more particularly to improvements, to a method and apparatus for admitting a lubricating fluid into the existing lubrication system of those engines for prelubricating the engine before start-up to reduce wear on the moving parts of the engine.
BACKGROUND-DESCRIPTION OF THE PRIOR ART
Internal combustion engines depend for their proper lubrication to be already running. During start-up, proper lubrication is not immediately achieved since all the oil or lubricant in the normally provided engine oil galleries is evacuated by gravity action. After the elapsing of a period of time, the oil adhered to the slidable working surfaces, engine lubricating galleries, and parts, drains to the bottom reservoir or oil sump. This leaves the slidable working surfaces unprotected from wear during the next start-up. McDonnell Douglas has performed tests which indicate that up to 90 percent of the wear in an internal combustion engine occurs during such start-ups or dry-starts due to oil starvation. Other wear mechanisms account for substantial wear in engines. These wear mechanisms are attributed mainly to suspended solid particles and chemical contaminants in the lubricating oil.
Most prior art systems addressing this problem rely on activation immediately prior to and/or during starting of the internal combustion engine. These methods introduce inconveniences such as waiting for the operating cycle to occur, required operator action, and difficult installation. Such inconvenient time delay is irritating to the vehicle operator and in some prior art may even be dangerous should the vehicle stall and needs to re-start immediately. There still is the long-felt need to have a system that delivers the desired benefits automatically, without waiting, and easily installed. In addition, prior art does little to address the added benefits of removing solid and chemical contaminants from the lubricating oil in combination with their prelubricating functions, and the benefits of substantially reducing the time required to reach normal oil pressure immediately after start-up as a result of the present invention automatic priming. Such contamination contributes substantially to engine wear and physical degradation of the engine lubricating oil. Normally provided filters in automobiles remove suspended solid particles larger than approximately 25 microns. Introduction of a filter rated for much higher arrestance for suspended solids with the additional function of separating chemicals from the oil and cooperating with the present invention solves and additional wear problem not addressed in prior art.
Prior art devices are required to be larger and more complicated installations because they need to overcome the specification of quick on demand delivery of lubricating oil. The present invention suggests and discloses a method and apparatus with an automatic system which substantially delivers the expected benefits, with the unexpected result of no waiting time and inherent reduction in size and cost. Further, it addresses additional wear mechanisms by simultaneous removal of solid and chemical contaminants from the lubricating oil.
Some prior art depend for their performance on a compressed chamber of potentially flammable liquid inside a hot engine bay. Rupture of the holding chamber inside a hot engine bay will produce a fire and environmental hazard. For example, a preoiling system depicted in U.S. Pat. No. 2,736,307, which issued to Wilcox on February 1956, includes a high pressure pump for charging a reservoir with engine oil which is released by engagement of the starter switch. Another type of lubricating system, depicted in U.S. Pat. Nos. 2,755,787 and 3,422,807, releases oil from a reservoir as the ignition is activated. A preoiler with a solenoid valve is shown in U.S. Pat. No. 3,556,070 and U.S. Pat. No. 3,583,525. A valve arrangement, depicted in U.S. Pat. No. 3,583,527, which issued to Raichel on June 1971, controls the charge and discharge of a reservoir of oil under pressure in response to the closing of the ignition switch. Another engine preoiler, disclosed in U.S. Pat. No. 4,061,204, includes a valve arrangement in the base of an accumulator having multiple ports. U.S. Pat. No. 4,094,293 depicts an engine pre-oiler with a pressurized reservoir for containing engine oil. Yet another prelubrication device depicted in U.S. Pat. No. 4,112,910, shows a holding mechanism for a coiled power spring which is released on actuation of the ignition system whereupon oil in a chamber is evacuated. U.S. Pat. No. 4,359,140, which issued to J. Shreve on November 16, 1982, discloses an auxiliary engine oiler including a reservoir for storing a lubricant under pressure. Another approach is U.S. Pat. No. 5,156,120, which issued to Kent on October 20, 1992, discloses a system with an accumulator for holding lubricant under pressure and returning the lubricant upon engine start-up. Yet another prelubrication system, depicted in U.S. Pat. No. 4,703,727, which issued to Cannon on November 1987, shows a high pressure oil pump, controlled by an ignition switch and an oil pressure sensor, for supplying oil to an engine immediately prior to start-up. These systems introduce inconvenience, safety and potential environmental problems.
Another approach is to provide a prelubrication system such as those disclosed in U.S. Pat. Nos. 3,066,664, which issued to McNew et al. on December 1962; 3,722,623, Waldecker; 3,842,937, Lippay et al.; 4,157,744, Capriotti; 4,168,693, Harrison; 4,524,734, Miller; 4,502,431, Lulich; 4,834,039, Apostolides; 4,825,826, Andres; 4,875,551, Lulich; 4,893,598, Stasiuk; 4,936,272, Whitmore; 4,940,114, Albrecht; and 5,000,143, which issued to Brown on March 1991. Generally, these patents disclose supplementary oil pumping systems which inject oil into the engine immediately prior to cranking and/or start-up. Although these references partially address the problem of prelubricating the engine, there are many undesirable design drawbacks and unrecognized problems to such systems. Additional elements in prior art increase the complexity and costs of installation and maintenance of such systems, as well as the space requirements in an already cramped engine bay. Some have required original fabrication of at least some of its components. Consequently, the size, complexity, cost and problems associated with the installation and maintenance of such systems has prevented their widespread use in most vehicles. It is estimated that less than approximately 1 in 10,000 automobiles have an engine prelubrication system.
Another approach is U.S. Pat. No. 4,199,950, which issued to A. Hakanson et al. on Apr. 29, 1980, which discloses a system for prelubricating an engine during starting in the form of an atomized mist generated by a nozzle operating under high pressure conditions. U.S. Pat. No. 4,502,431, which issued to J. Lulich on Mar. 5, 1985, discloses an oil pumping system driven from the starter motor which generates oil pressure prior to start-up.
Another approach is U.S. Pat. No. 5,195,476, which issued to Schwarz on Mar. 23, 1993, discloses a system for prelubricating an engine by using the pump provided by the manufacturer as a means to pressurize the oil immediately before start-up, but at the expense of introducing undesirable wear and tear on the starting and electrical system, and inconvenience. U.S. Pat. 5,121,720, which issued to Roberts on June 1992, discloses a prelubrication system that operates upon the operator opening the door, with the problem of inconvenience, and unnecessary wear and tear of the apparatus due to false open door signals.
Yet another approach is found in U.S. Pat. No. 5,488,935 issued to R. L. Berry Jr. on Feb. 6, 1996, which discloses a single charge pressurized oil injection system comprising a pressure accumulator and a normally closed electromagnetic valve operated when the ignition switch is turned to the on position. Other relatively unsafe hydraulic accumulators ha

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for reducing wear in an internal... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for reducing wear in an internal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for reducing wear in an internal... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2947790

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.