Method and apparatus for reducing static charges during...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Polymers from only ethylenic monomers or processes of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C526S067000, C526S068000, C526S078000, C324S453000

Reexamination Certificate

active

06548610

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a method and apparatus for controlling static charges in a fluidized bed olefin polymerization reactor. By controlling the static charges in the reactor, sheeting and drooling can be controlled.
BACKGROUND OF THE INVENTION
One of the major advances in olefin polymerization technology has been the development of commercially useful metallocene based catalyst systems. Among other advantages, metallocene catalysts allow the production of polyolefins with unique properties such as narrow molecular weight distribution. These properties in turn result in improved structural performance in products made with the polymers such as greater impact strength and clarity in films.
While metallocene catalysts have yielded polymers with improved characteristics, they have presented new challenges when used in traditional polymerization systems. One such area has been in the control of “sheeting” and the related phenomena “drooling” when metallocene catalysts are used in fluidized bed reactors such as those described in U.S. Pat. Nos. 5,436,304 and 5,405,922. By “sheeting” is meant the adherence of fused catalyst and resin particles to the walls of the reactor. The sheets will eventually dislodge from the wall and, if the sheets are large enough, they can result in reactor plugging. “Drooling” or dome sheeting occurs when sheets of molten polymer form on the reactor walls, usually in the expanded section or “dome” of the reactor, and flow along the walls of the reactor and accumulate at the base of the reactor. This can result in plugging of the distributor plate in the reactor and loss of fluidization.
In commercial reactors, sheets can vary widely in size, and are usually about 0.6 to 1.3 cm thick and are from 0.3 to 2.0 meters long, with a few even longer. They can have a width of about 7 cm to more than 45 cm. The sheets have a core composed of fused polymer which is oriented in the long direction of the sheets, and their surfaces are covered with granular resin which is fused to the core. The edges of the sheets can have a hairy or stringy appearance from strands of fused polymer.
It has been found that there exists a strong correlation between polymer sheeting and drooling and the presence of an excess of static charges, either positive or negative, in the reactor during polymerization. This is evidenced by sudden changes in static levels followed closely by deviation in temperature at the reactor wall. These temperature deviations are either high or low. Low temperatures indicate particle adhesion to the reactor causing an insulating effect from the bed temperature. High deviations indicate reaction taking place in zones of limited heat transfer. Following this, disruption in fluidization patterns is generally evident, such as, for example, catalyst feed interruption, plugging of the product discharge system, and the occurrence of fused agglomerates (sheets) in the product.
Various methods for controlling sheeting have been developed. These often involve monitoring the static charges near the reactor wall in regions where sheeting is known to develop and introducing a static control agent into the reactor when the static levels fall outside a predetermined range. For example, U.S. Pat. Nos. 4,803,251 and 5,391,657 disclose the use of various chemical additives to a fluidized bed reactor to control static charges in the reactor. A positive charge generating additive is used if the static charge is negative, and a negative charge generating additive is used if the static charge is positive. The static charge in the reactor is measured at or near the reactor wall at or below the site where sheet formation usually occurs, using static voltage indicators such as voltage probes or electrodes.
The prior art, such as that disclosed in U.S. Pat. Nos. 4,803,251 and 5,391,657, teaches that static plays an important role in the sheeting process with Ziegler-Natta catalysts. We have found that static also plays an important role in sheeting and drooling with metallocene catalyst. When the static charge levels on the catalyst and resin particles exceed certain critical levels, the particles become attached by electrostatic forces to the grounded metal walls of the reactor. If allowed to reside long enough on the wall under a reactive environment, excess temperatures can result in particle fusion and melting, thus producing the sheets or drools.
The principal cause for static charge generation in the reactor is frictional contact of dissimilar materials by a physical process known as the triboelectric effect. In the gas phase, polymer production reactors, the static is generated by frictional contact between the catalyst and polymer particles and the reactor walls. The frictional contact causes a flow of electrical charges from the walls of the grounded metal reactor to or from the polymer and catalyst particles in the fluid bed. The charge flow can be measured by employing static probes. Typical charge flows (currents) are of magnitude 0.1 to 10 microamperes per square meter of reactor surface area. Although these currents are very low, relatively high levels of electrical charge can accumulate over time in the reactor. This accumulation is enabled by the highly insulating characteristics of the polymer and catalyst particles.
The frictional electrification of the polymer and catalyst particles can be strongly influenced by the type of polymer that is being produced. In particular, the polymer molecular weight has a strong effect, with higher molecular weight polymers being more prone to developing high levels of static charge. Static charging in the fluid bed is also strongly influenced by the presence of minute quantities of static charge inducing impurities.
When sufficiently high levels of charge or charge accumulation becomes large enough, the frictional electrification of the polymer and catalyst particles can be strongly influenced by the type of polymer that is being produced. In particular, the polymer molecular weight has a strong effect, with higher molecular weight polymers being more prone to developing high levels of static charge. Static charging in the fluid bed is also strongly influenced by the presence of minute quantities of static charge inducing impurities.
For conventional catalyst systems such as traditional Ziegeler-Natta catalysts or Chromium-based catalysts, sheet formation usually occurs in the lower part of the fluidized bed. For this reason, the voltage indicators have traditionally been placed in the lower part on the reactor. For example, in U.S. Pat. No. 5,391,657, the voltage indicator was placed near the reactor distributor plate. See also U.S. Pat. No. 4,855,370. The indicators were also placed close to the reactor wall, normally less than 2 cm from the wall.
There are two types of static indicators (or probes) described in the prior art, the “voltage probe” (U.S. Pat. No. 4,855,370) and the “current probe” (U.S. Pat. No. 5,648,581 and U.S. Pat. No. 6,008,662). Both types of probes are similar in that they measure electrical characteristics of the fluidized bed near the reactor wall. The current probe measures the electrical current flowing from a metal electrode (probe tip) by the frictional contact of the resin and catalyst particles. It is intended to provide a single-point measurement of the surface current flowing from the much larger metal walls of the reactor to the fluid bed.
The voltage probe consists of a simple metal electrode connected to an external voltage measuring device of high resistance. Typical values of the resistance are of the order of 100 giga-ohms (10
11
ohms). The authors of U.S. Pat. No. 4,855,370 mistakenly considered the readings from these probes to be an indication of the voltage within the fluid bed, as generated by the static charge. A more recent patent (U.S. Pat. No. 6,008,662) teaches that, despite the high resistance, the voltage probes actually measure the surface current. That is, the “voltage” indicated on the probes of U.S. Pat. No. 4,855,370 is actually just the prod

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for reducing static charges during... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for reducing static charges during..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for reducing static charges during... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3083627

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.