Communications: directive radio wave systems and devices (e.g. – Return signal controls external device – Radar mounted on and controls land vehicle
Reexamination Certificate
2001-06-15
2003-06-24
Gregory, Bernarr E. (Department: 3662)
Communications: directive radio wave systems and devices (e.g.,
Return signal controls external device
Radar mounted on and controls land vehicle
C342S027000, C342S028000, C342S052000, C342S054000, C342S071000, C701S300000, C701S301000
Reexamination Certificate
active
06583752
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a method of recognizing an object. In addition, this invention relates to an apparatus for recognizing an object which can be mounted on a vehicle. Furthermore, this invention relates to a recording medium storing a computer program for recognizing an object.
2. Description of the Related Art
A known object recognition apparatus for a vehicle emits a forward wave beam such as a light beam or a millimeter wave beam from the body of the vehicle, and enables the forward wave beam to scan a given angular region in front of the body of the vehicle. In the case where an object exists in the given angular region, the forward wave beam encounters the object before being at least partially reflected thereby. A portion of the reflected wave beam returns to the apparatus as an echo wave beam. The apparatus detects and recognizes the object in response to the echo wave beam.
The known object recognition apparatus is used in a warning system for a vehicle which alarms when an obstacle such as a preceding vehicle exists in a given angular region in front of the present vehicle. The known object recognition apparatus is used also in a system for a vehicle which controls the speed of the vehicle to maintain a proper distance between the vehicle and a preceding vehicle.
Japanese patent application publication number 8-240660 discloses an on-vehicle apparatus for recognizing objects. The apparatus in Japanese application 8-240660 includes a distance sensor mounted on the present vehicle which detects the longitudinal-direction and transverse-direction distances to objects from the present vehicle. The distance sensor generates detection data having pieces representing distances to objects respectively. The distances to the objects mean positions of the objects relative to the present vehicle. In the apparatus of Japanese application 8-240660, pieces of detection data which correspond to object positions close to each other and in a first prescribed mutual-distance range are collected into a block having a block label. Generally, there are a plurality of blocks. Speeds relative to the present vehicle and corresponding to respective blocks are calculated. Blocks which correspond to positions in a second prescribed mutual-distance range, and which correspond to speeds in a preset speed-difference range are collected into a group having a group label. Finally, an object is recognized from detection data pieces representing a group.
Japanese patent application publication number 11-337636 discloses a rear monitoring system for a vehicle. In the system of Japanese application 11-337636, a rear sensor outputs a plurality of wave motions for detection from the rear of one's own vehicle toward different regions, and captures the reflected waves in response to each of the wave motions. The location of a wave motion reflecting point in the rear of one's own vehicle is detected, and an object in the rear of one's own vehicle is discriminated by an object discriminating means on the basis of the continuity of information on the location of a wave motion reflecting point. Then, the relative speed of the object discriminated by the object discriminating means with respect to one's own vehicle is computed by deciding means. On the basis of the relative speed, it is determined whether or not the object is an approaching object. When there are a plurality of discriminated objects at this time, the distance between the two objects is compared with a reference distance obtained by multiplying the speed of one's own vehicle by a predetermined time. When the distance between the two objects is equal to or less than the reference distance, the two objects are decided to be the one and the same object. Thus, in this case, the two objects are recognized as a single object at the object discriminating means.
Japanese patent application publication number 9-15331 discloses an on-vehicle apparatus for detecting an object. The apparatus in Japanese application 9-15331 includes a distance sensor which detects a distance between its own vehicle and an object by transmission and reception of laser light. Output data from the distance sensor are developed by a coordinate development means on the X-Y coordinates for which the longitudinal direction from the own vehicle is taken as the Y axis and the lateral direction as the X axis. A cell forming means which provides a plurality of cells divided at prescribed intervals in the directions of the X and Y axes sets the developed data on the cells, and outputs the X-Y coordinates and the number of the data of each cell as cell information. Based on this information, an object discriminating means attaches the same label to the cells near to each other, and discriminates a plurality of cells as the same object. Then, a setting number of data being closer in the distance in the longitudinal direction are selected out of the cell data corresponding to the same object, and the longitudinal-direction distances corresponding to the selected data are averaged into a mean value. The mean value is used as an indication of the distance in the longitudinal direction from the own vehicle to the object.
U.S. Pat. No. 5,710,565 discloses an inter-vehicle distance control system which includes a laser scanning type distance sensor for moving a laser beam in a width-wise direction of a system vehicle to implement scanning and to determine relative positions and relative angles of objects within a forward detectable zone. A determination is made as to same lane probabilities that the objects exist in the same lane of a road as the system vehicle on the basis of a variable probability distribution and the relative positions and the relative angles of the objets. A target preceding vehicle is selected from the objects on the basis of the same lane probabilities. Information of the target preceding vehicle is used in controlling the speed of the system vehicle to keep constant the distance to the target preceding vehicle.
U.S. Pat. No. 5,574,463 discloses an obstacle recognition system for a vehicle which includes a radar device for emitting a wave beam into a given angular range outside a vehicle, and scanning the given angular range by the wave beam. The radar device detects a reflected wave beam. A recognizing device is operative for recognizing an obstacle with respect to the vehicle on the basis of the result of detection of the reflected wave beam by the radar device. In the recognizing device, a point recognizing section recognizes obstacles as points, and a uniting section is operative for uniting adjacent points among the points provided by the point recognizing section. The uniting section provides sets each having adjacent points. A line-segment recognizing section is operative for detecting a specific set or specific sets of adjacent points among the adjacent-point sets provided by the uniting section, and for recognizing every detected specific set as a line segment having a length only along a width direction of the vehicle. Every specific set has a length smaller than a given length along a longitudinal direction of the vehicle. A position estimating section estimates the position of a line segment, which will be provided by the line-segment recognizing section, in response to the position of a previously-provided line segment. An identity judging section is operative for comparing the line-segment position estimated by the position estimating section and the position of a line segment currently provided by the line-segment recognizing section to judge whether or not the line segment currently provided by the line-segment recognizing section and the previously-provided line segment are the same.
It is known to use target models in object recognition for a vehicle. In some cases, there simultaneously occur a correct target model and a wrong target model as a result of recognition concerning one object. The wrong target model is caused by, for example, noise. Generally, every target mo
Matsuoka Keiji
Nozawa Toyohito
Ookata Hiroshi
Samukawa Yoshie
Shirai Noriaki
Denso Corporation
Gregory Bernarr E.
Posz & Bethards, PLC
LandOfFree
Method and apparatus for recognizing object does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for recognizing object, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for recognizing object will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3141996