Method and apparatus for reading and controlling electric...

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Electrical signal parameter measurement system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S115000

Reexamination Certificate

active

06622097

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to a utility usage measurement system, and more particularly to a means of obtaining real-time utility consumption readings and also managing utility consumption by controlling end-use devices from the computer or personal digital assistant (PDA) of the consumer.
BACKGROUND OF THE INVENTION
There are various types of automatic meter reading devices (AMR) which use optical light-sensing arrangements to provide remote utility readings for determining utility consumption and for billing purposes. These devices were typically developed as a cost-effective alternative to the existing meter reading methods and devices. For example, these AMR devices avoid having a person walk or drive from establishment to establishment and manually read each meter. However, the majority of methods using optical light-sensing devices are installed inside the existing meter and/or require professional installation. Thus, a skilled or trained individual must physically remove the glass housing present on such meter in order to install the automatic reading device. This process is inefficient and also very costly for either the utility company or the consumer.
In U.S. Pat. No. 5,767,790, the device utilizes a photoelectric sensor for reading the watt-hour indicator of electricity service usage. A light source beams a light on a rotating disk in the meter. The disk reflects the light except for one darkened area, which absorbs the beam of light. The reflected light is sensed by the photoelectric sensor and a pulse is sent each time the reflected light is not sensed. Each pulse indicates one full rotation of the disk. All of the computing elements of the monitor system are contained within the utility watt-hour meter housing, and even the glass cover is replaced with a polycarbonate cover. Other similar devices installed within the existing meter housing are disclosed in U.S. Pat. No. 4,327,3625 and U.S. Pat. No. 5,506,404. A significant disadvantage typical of these devices is that the installation process requires the existing meter to be physically opened and/or the optical light sensing arrangement to be assembled with professional assistance. Thus, an ordinary consumer generally cannot set up the device, and therefore consumers would have to bear installation costs.
In U.S. Pat. No. 5,880,464, infrared light sensors are used to detect the shadow of a meter pointer against a meter face to enable the meter reader to determine consumption rates. This automatic meter reader device is placed on the cover of the watt-hour meter. However, the device requires the angle and heights of the light source and sensor to be adjusted in a specific manner using a height adjustment carrier having a collar that must be tightened, which a typical customer most likely would find difficult to accurately adjust. Furthermore, no provision is made for powering the device and thus further installation problems may be created for the consumer.
There are also certain utility-based applications in which a network controller or some other headend device located in a utility company interrogates the automatic meter reading device, in order to find out the utility usage for billing purposes. Typical drawbacks that are inherent in these systems are that customers cannot see their use in real-time, cannot access this information except when a billing statement is received and, cannot see data except in the standard format chosen by the utility company.
In addition, there are various types of readers that can be utilized to manage the consumption of electrical power or fossil fuels. In U.S. Pat. No. 6,167,389 allows the consumer, through the use of adapted end-use devices, to program these devices based on a pricing-tier billing system. The pricing-tier billing system sets a billing rate for power consumption based on the load levels on a power grid. A utility company may use a billing system with four-tiers: Normal Load, Medium Load, High Load, and Critical Load. Each tier has a different billing rate for power consumption with the Critical Load tier charging at the highest rate. The utility company may transmit data packets though an open network from a centralized headend to gateways at customer locations. These data packet cause the gateways to generate random startup time offsets, to control when end-use devices will be started. This is useful to protect the power grid from being loaded such that results in a blackout. However, this system does little to provide feedback to the consumer, let alone provide them with real-time data on their use and cost that allows the consumer to directly shed load voluntarily or with incentive, in order to help the utility balance its load demands. Thus, this device allows the utility company to obtain meter readouts are obtained for internal load and billing purposes only.
SUMMARY OF THE INVENTION
The present invention provides an electro-optical, automatic meter reader (AMR) for enabling a consumer to view and manage power consumption on the consumer's computer, which may be a computer or PDA. The automatic meter reader is an apparatus for optically reading a meter using a sensor that can be used to monitor electricity consumption. A sensor of the apparatus may be attached to a bracket, which may be mounted to the outside cover of the meter. An installation process of the apparatus need not require modification of the existing meter nor require removal of the housing of the existing meter. An end-user may install the automatic meter reader without special skills or tools, in fact, with no additional hardware other than those included as a part of the system.
The photoelectric sensor beams a light onto a rotating disk, visible on the face of the meter, whose surface reflects the light. A marker such as a black dot or line placed on the rotating disk absorbs the beamed light resulting in an interval where a lower level of light is being reflected. The photoelectric sensor counts these intervals, representing the number of turns the disk rotates indicating utility usage during a given time period. The apparatus connects to a data-collection unit through a first serial port. The data-collection unit stores the data from the sensor. The serial port connection may also serve to supply power for the apparatus through one otherwise unused pin of that serial connector being assigned as a power carrier, thus avoiding the need for a dedicated power supply. The data collection unit may also be used to store data when the computer is turned off and can be powered by an external 12 volt DC power supply.
The data-collection unit connects through a second serial port, located on the opposite side from the first serial port, to the user's computer. The computer provides the consumer with a centralized location to either directly or remotely view and manage his power consumption. The software collects the data and provides the end-user with information relating to power consumption such as real-time rate of usage and historical usage levels. For example, information is arranged in three graphs that are analogous to information common to automobile travel. These include the real-time rate-of-use, comparable to the speedometer of an automobile. This graph tells the user how much power they are consuming at this moment. The second graph, a monthly data graph displaying daily data, is comparable to the trip odometer. This graph shows the user how much power they have consumed on a day-to-date, daily and month-to-date basis. The final graph is comparable to the general odometer. It shows the total energy consumption through the life of the system. Each graph can be displayed in units of kilowatt hours or dollars or other forms of currency. By presenting this data in three logical and understandable formats, data can be used to forecast whether the consumer will be under his monthly baseline utility usage or cost level of consumption based on then-current requirements. Such forecasts are commonly used by trip computers in automobiles to tell the consu

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for reading and controlling electric... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for reading and controlling electric..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for reading and controlling electric... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3091181

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.