Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
1996-03-28
2001-03-27
Layno, Carl H. (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C607S020000
Reexamination Certificate
active
06208900
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to implantable pacemakers and more particularly to a method and apparatus for providing rate response in proportion to the patient's metabolic demand for cardiac output as determined in response to the patient's breathing rate or respiratory minute ventilation or cardiac contraction strength optionally augmented by the patient's activity level.
BACKGROUND OF THE INVENTION
As described in commonly assigned U.S. Pat. No. 5,320,643 to Roline et al., incorporated herein by reference, a cardiac pacemaker implantable pulse generator (IPG) is an electrical device used to supplant some or all of an abnormal heart's natural pacing function by delivering appropriately timed electrical stimulation signals designed to cause the myocardium of the heart to contract or “beat”, i.e. to “capture” the heart. Stimulation pulses provided by implanted pacemakers usually have well-defined amplitude and pulse width characteristics which can be adjusted by remote programming and telemetry equipment to meet physiologic and device power conservation needs of the particular patient.
For state-of-the-art pacemakers, the rate at which stimulation signals are delivered may be variable, and such variation may occur automatically in response to detected changes in a patient's level of physical activity. Such rate-responsive or activity-responsive pacemakers depend on physiologically-based signals, such as signals from sensors which measuring naturally-occurring (intrinsic) cardiac electrical activity, or which measure the pressure inside the patient's ventricle. Such physiologically-based signals provide information regarding cardiac function and the need for pacemaker intervention, and thus are useful for determining a patient's metabolic demand for oxygenated blood.
One popular method for measuring a patient's demand for oxygenated blood is to monitor the patient's level of physical activity by means of a piezoelectric, microphone-like transducer mounted within and against the IPG can. A pacemaker which employs such a method is disclosed in U.S. Pat. No. 4,485,813 to Anderson et al.
In typical prior art rate-responsive pacemakers, the pacing rate is determined according to the output from an activity sensor. The pacing rate is variable between a predetermined maximum and minimum level, which may be selectable by a physician from among a plurality of programmable upper and lower rate limit settings. When the activity sensor output indicates that the patient's activity level has increased, the pacing rate is increased from the programmed lower rate by an incremental amount which is determined as a function of the output of the activity sensor. That is, the rate-responsive or “target” pacing rate in a rate-responsive pacemaker is determined as follows:
TargetRate=ProgrammedLowerRate+
f
(SensorOutput)
where f is typically a linear or monotonic function of the sensor output.
As long as patient activity continues to be indicated, the pacing rate is periodically increased by incremental amounts until the rate computed according to the above formula is reached (or until the programmed upper rate limit is reached, whichever is lower). In this way, an elevated pacing rate (i.e., one higher than the programmed lower rate limit) may be sustained during periods of patient activity. When patient activity ceases, the pacing rate is gradually reduced, until the programmed lower rate limit is reached.
For any of the known rate-responsive pacemakers, it is clearly desirable that the sensor output correlate to as high a degree as possible with the actual metabolic and physiologic needs of the patient, so that the resulting rate-responsive pacing rate may be adjusted to appropriate levels. A piezoelectric activity sensor can only be used to indirectly determine the metabolic need. The physical activity sensed by a piezoelectric transducer may in some cases be influenced by upper body motion. Therefore, an exercise that involves arm motion may provide signals that are inappropriately greater than the metabolic need. Conversely, exercises that stimulate the lower body only, such as bicycle riding, may provide a low indication of metabolic need while the actual requirement is higher.
To address these perceived disadvantages in the prior art, it has been proposed to utilize other physiologically-based parameters in assessment of a patient's metabolic demand. Respiratory minute ventilation (V
E
) has been demonstrated clinically to be a parameter that correlates directly to the actual metabolic and physiologic needs of the patient. Respiratory minute ventilation is defined by the equation:
V
E
=RR×TV
where RR=respiration rate in breaths per minute, and TV=tidal volume in liters. Clinically, the measurement of V
E
is performed by having the patient breathe directly into a device that measures the exchange of air and computing the total volume per minute. The direct measurement of V
E
is not practical with an implanted device. However, measurement of the impedance changes of the thoracic cavity can be implemented with an implanted pacemaker, and transthoracic cardiac impedance has been shown to correlate well with V
E
. A pacemaker that is provided with impedance measurement capabilities is disclosed in U.S. Pat. No. 4,702,253 to Nappholz et al. The magnitude of the change of the impedance signal corresponds to the tidal volume and the frequency of change corresponds to respiration rate. Thus, measurement of cardiac impedance can be used as one method for obtaining V
E
data.
In practice, cardiac impedance can be measured through assessment of the impedance present between two or more cardiac electrodes, such as the electrodes otherwise used for pacing and/or sensing in connection with a cardiac pacemaker. In particular, it has been shown that cardiac impedance can be measured by delivering constant-current excitation pulses between two “source” electrodes, such that the current is conducted through some region of cardiac tissue. The voltage differential between two “recording” electrodes can then be measured to ascertain the impedance as reflected by the voltage differential arising from the conduction of the excitation current pulses through the tissue.
In U.S. Pat. No. 4,721,110 to Lampadius, there is described a rheographic arrangement for a cardiac pacemaker in which the base pacing rate of the pacemaker is determined, in part, by a rheographically derived respiration rate signal. Correlation of breathing and intrathoracic pressure fluctuations with impedance of blood in the heart is also recognized in U.S. Pat. No. 4,884,576 to Alt, which describes the measurement of impedance between two electrodes. According to the '576 patent, low-pass filtering of the impedance signal yields a signal from which the patient's respiratory rate can be derived, while high-pass filtering of the same signal yields a signal from which the patient's cardiac function can be observed.
There are currently several commercially available, implantable, rate-responsive IPGs which employ rheographic techniques to adjust the pacing rate in response to metabolic needs. For example, the Biorate IPG manufactured by Biotec International, Bologna, Italy, uses a bipolar rheographic arrangement to monitor the patient's respiration rate. The Meta-MV IPG manufactured by Telectronics, Inc., Englewood, Colo., uses a tripolar rheographic arrangement to monitor the patient's metabolic demand for oxygenated blood. The Precept IPG manufactured by CPI, St. Paul, Minn., uses a tetrapolar rheographic configuration to monitor the patient's pre-ejection interval (PEI), stroke volume, and heart tissue contractility.
The Legend Plus™ IPG, manufactured by Medtronic, Inc., Minneapolis, Minn. and currently undergoing clinical trials in the United States is another example of an implantable pacemaker which employs rheography in support of its rate-response function. The Legend Plus™ IPG delivers
Ecker Robert M.
McClure Lawrence C.
Wahlstrand John D.
Atlass Michael B.
Layno Carl H.
Medtronic Inc.
Patton Harold R.
LandOfFree
Method and apparatus for rate-responsive cardiac pacing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for rate-responsive cardiac pacing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for rate-responsive cardiac pacing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2482259