Method and apparatus for rapid ice production

Refrigeration – Processes – Congealing flowable material – e.g. – ice making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S353000

Reexamination Certificate

active

06351955

ABSTRACT:

BACKGROUND OF THE PRESENT INVENTION
The present invention relates to ice makers within enclosed freezer compartments of refrigeration appliances and more particularly to a method of enhancing the ice production of such ice makers.
The present invention is directed to improvements in the type of icemakers exemplified by those disclosed in U.S. Pat. Nos. 4,756,165 and 4,799,362, owned by the assignee of the present invention, wherein an ice mold and associated ice maker mechanism are mounted in the freezer compartment of a domestic combination refrigerator/freezer apparatus. The ice maker includes a mold in which water is frozen to form a plurality of ice bodies. An electric motor rotates the mold when the ice has formed. An electric heater in heat transfer association with the mold frees the ice bodies from the mold and the ice bodies are ejected from the mold. The ice maker includes a control circuit with a thermostat responsive to the temperature of water in the mold. A thermostat switch is controlled by the thermostat to initiate and terminate operation of the ice maker motor for ejecting the ice body upon complete freezing thereof and concurrently energizing the heater.
In domestic combination refrigerator/freezers, the rate at which a component ice maker located in the freezer compartment can make ice is limited by the fact that the evaporator fan cycles on and off with the compressor. During the “off-cycle”, which can be as much as 70% of the time depending on ambient conditions, the rate of heat removal from the ice maker mold is drastically reduced compared to the “on-cycle” due to the loss of the forced air convection. Since the air within the freezer is controlled to be significantly below freezing during the “off-cycle”, what is required to maintain the efficient and rapid rate of ice production that is available during the “on-cycle” is to provide a means to keep the air moving over the mold. Running the evaporator fan during this period may not be desirable, since it would normally draw air from the refrigeration compartment past the evaporator and into the freezer compartment, warming both.
In fact, it has been experimentally observed that the rate of ice production in domestic combination refrigerator freezers with these and similar ice makers is greatly affected by the ambient temperature of the room. More particularly, when the room is warmer, it has been observed that the compressor operates more frequently and that the ice making production rate increases. It has been experimentally determined by the present inventors that the rate of ice production is directly and drastically influenced by the amount of airflow across the ice forming components of the ice maker.
Therefore, what is needed to obtain a reliable optimal ice production rate is to provide for sufficient airflow across the ice maker during ice making regardless of the ambient temperature.
In U.S. Pat. No. 4,799,362 there is further disclosed an ice maker similar to the one described in U.S. Pat. No. 4,756,165 but modified to provide pre-selected circuit test probe points for cooperation with a test apparatus for testing the operating condition of components of the ice maker. The test probe points allow inspection during manufacture or maintenance of the operation of the icemaker.
It would be advantageous to use test probe points of this type for the dual purpose of monitoring the operation of the icemaker to determine when airflow should be increased to provide optical ice production.
SUMMARY OF THE PRESENT INVENTION
The present invention is directed to a method and apparatus for improved ice production within a freezer or within the freezer compartment of a combination refrigerator/freezer. The present invention improves the rate of ice production by providing a fan selectively operable to direct cooled air across the ice making surfaces of the ice maker during the ice formation process.
In one embodiment of the present invention, a fan or blower is disposed at the rear of the freezer compartment and is selectively operable to direct air from the freezer compartment forward towards and across the ice forming components of the ice maker apparatus.
In a second embodiment of the present invention, a fan or blower, is mounted to a forward portion of the ice making apparatus and is selectively operable to direct air rearwardly towards and across the ice forming components of the ice making apparatus.
In the second embodiment, the fan or blower is part of a fan assembly selectively and removably mountable to the ice maker assembly an optional feature.
In either embodiment, the fan assembly preferably takes power off of pre-selected power test connection points on the ice maker which supply power when the ice maker is in the ice forming portion of its cycle.
In either embodiment, the fan is preferably selectively operable to run only when the ice maker is powered to make ice and does not operate during ice harvest.
It is therefore an object of the present invention to provide an ice maker having an optimized rate of ice production regardless of ambient conditions. It is another object of the present invention to provide an upgrade module for an ice maker such that it may be provided in a conventional configuration or, by interconnecting the upgrade module, in an optional high ice production configuration. It is yet another object of the present invention to provide an ice maker having a means to increase air flow across the mold at times selected to produce optimized production ice where such times are determined by monitoring preselected ice maker control circuit test points indicative of such preselected times.
It is still another object of the present invention to provide a method of optimizing ice production in an ice maker in a refrigeration device by increasing air flow across the mold at preselected times independent of ambient room conditions. It is another object of the present invention to provide a method of optimizing ice production in an ice maker in a refrigeration device by increasing air flow across the mold at times selected to produce optimized production ice where such times are determined by monitoring preselected icemaker control circuit test points indicative of such preselected times.
These and the many objects and advantages of the present invention will become apparent to those skilled in the art from the following detailed description of the present invention in conjunction with the accompanying drawings.


REFERENCES:
patent: 3055186 (1962-09-01), Linstromberg et al.
patent: 3126714 (1964-03-01), Zuercher, Jr.
patent: 3146606 (1964-09-01), Grimes et al.
patent: 3182464 (1965-05-01), Archer
patent: 3270519 (1966-09-01), Pohl, Jr.
patent: 3382682 (1968-05-01), Frohbieter
patent: 3541806 (1970-11-01), Jacobs
patent: 4727720 (1988-03-01), Wernicki
patent: 4756165 (1988-07-01), Chestnut et al.
patent: 4799362 (1989-01-01), Chesnut

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for rapid ice production does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for rapid ice production, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for rapid ice production will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2868622

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.