Method and apparatus for rapid control of set inspired gas...

Surgery – Respiratory method or device – Means for mixing treating agent with respiratory gas

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S204210, C128S204130

Reexamination Certificate

active

06216690

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to medical anesthesia delivery machines, and more particularly, to a method and apparatus to provide rapid control of set inspired gas concentration in circular type anesthesia breathing circuits for providing breathing gases and anesthesia to a patient.
Fundamentally, medical anesthesia delivery systems regulate the flow and mixture of breathing gases inspired and expired by a patient undergoing treatment. Inspired breathing gases typically consist of a mixture of oxygen, nitrous oxide, air and other gases. Anesthesia is administered by clinicians, who command the anesthesia delivery system to control gas and anesthetic concentrations throughout the three phases of patient anesthesia—induction, maintenance and emergence. Each of these phases is characterized by different demands placed on the anesthesia delivery control system. For example, during induction, it is important that high fresh gas flow be supplied to the breathing circuit in order to provide a quick increase in the concentration of breathing gas and anesthesia agent required. At induction, patient uptake of nitrous oxide and volatile anesthesia agent is very high and precise control of the gas flow during this phase is relatively unimportant. On the other hand, during the maintenance and emergence phases, control of the fresh gas flow is more critical. In some practices, prior to emergence from anesthesia, flow of the anesthetic agent is discontinued, and minimal fresh gas flow is introduced into the breathing circuit to gradually recover the patient from anesthesia. After surgery is completed, fresh gas flows are increased to rapidly reduce the anesthetic agent concentration in the inspired mixture and to facilitate a “washout” of anesthetic agent from the patient's bloodstream. Accurate and dependable control of the concentration and flow of gas and anesthetic vapor is thus critical to the function of the anesthesia delivery system and to the safety of the patient undergoing anesthesia.
A typical anesthesia machine mixes the gases which constitute the fresh breathing gas mixture according to operator settings or instructions from a control system. Fresh breathing gas is then conveyed through a vaporizing unit which provides anesthetic vapor to the fresh gas. Fresh gas then enters a breathing circuit which circulates inspired gases to the patient through an inspiratory conduit. Expired gases are conveyed away from the patient via an expiratory conduit. A re-breathing conduit is typically provided to route expired gases from the expiratory conduit back to the inspiratory conduit and is provided with a carbon dioxide absorber for removing carbon dioxide from the re-breathed gas. A ventilator assembly is provided in communication with the breathing circuit as a reservoir for breathing gases and to provide the pressure force for ventilator-assisted inspiration and expiration in lieu of spontaneous breathing by the patient or manual bagging by the clinician. A pop-off valve is typically provided in conjunction with the ventilator to permit release of excess gas from the breathing circuit.
The advantages of low or minimal fresh gas flow rates into the breathing circuit have long been recognized. Minimal or low fresh gas flow offers the advantages of more efficient management and conservation of fresh gas and anesthetic agent, as well as patient-generated heat and humidity in the breathing gas. Additionally, the effects of leaks and changes in patient uptake are more pronounced, and thus more detectable, in low flow delivery schemes. This permits more careful monitoring of the therapy provided to the patient. Minimal or low fresh gas flow delivery schemes, however, have heretofore presented a number of problems which have resulted in reduced operator confidence.
The response time for low flow systems to reach steady state after a disturbance or change in user-set concentrations varies inversely with the flow rate of fresh gas, that is, changes occur faster with higher flow rates. Thus, a major problem with low or minimal flow delivery schemes, particularly in closed-circuit delivery methods, is that system response to changes in user-set gas and vapor concentrations is unsatisfactory. Low flow delivery schemes have been consequently less robust, more susceptible to instability, and more sensitive to disturbances, such as leaks and changes in patient uptake, than higher flow delivery schemes. As a result, clinicians who are accustomed to manually adjusting fresh gas flows according to their own judgment to compensate for or negate the effects of leakage have low confidence in the safety of low or minimal flow systems. Such systems do not allow for adequate clinician control of the fresh gas flow to the breathing circuit.
There have been attempts to reduce fresh gas flows by operating the breathing circuit in closed circuit fashion whereby fresh gas is added to the breathing circuit at the rate at which it is consumed by the patient. Closed-circuit delivery schemes require very precise measurement of the gas volumes in the breathing circuit in order to maintain adequate control thereon. This is a consequence of the fact that the volume of fresh gas that may be used to replenish the breathing circuit, and thus adjust the gas volumes, is limited to the volume lost from the breathing circuit due to patient uptake and, often, leakage. Control techniques for closed-circuit delivery schemes are extremely sensitive to loss in circuit gases through leaks or changes in patient gas exchange. This increases the safety risks associated with the replenishment of the circuit gas volume and maintenance of the ventilatory tidal volume.
Attempts to address the slow response times of closed-circuit delivery systems have done so primarily at the expense of inefficient management of fresh gas flow. An example of such a prior art device uses a control system which enables closed-circuit anesthesia delivery systems to quickly respond to changes in user set points. Feedback loops are utilized to control the concentrations of oxygen, carbon dioxide and anesthetic agent concentrations in the breathing circuit based on sensed values. These normally closed control loops may be opened and fresh gas flow increased for a predetermined time in response to a change in the desired user-set concentration for anesthetic agent or gas concentrations. Open-loop high flow operation has the effect of flushing the breathing circuit with fresh gas until the concentration of anesthetic approaches the new desired value. One disadvantage of such devices is that, once the control loop is closed and fresh gas flow reduced after the new set point has been reached, the system is sluggish in responding to and correcting disturbances in the breathing circuit gas concentrations.
There is thus desired an anesthesia delivery system that solves the aforementioned problems and permits clinicians to control the minimum amount of total fresh gas flow into the breathing circuit according to their own judgement and the clinical need. This provides increased user confidence in the anesthesia delivery system.
There is also desired an anesthesia delivery system control system which permits satisfactory anesthesia delivery system response during low or minimal flow of fresh gas and which is capable of conserving the amount of patient gases exhausted from the breathing circuit.
Therefore, it would be desirable to have an anesthesia delivery system control that can provide automatic control of gas and agent concentrations at low or minimal fresh gas flows and throughout variations in the rate of fresh gas flow. It would also be desirable to have an anesthesia delivery system that allows clinicians to set a minimum fresh gas flow to the breathing circuit. It would further be advantageous for an anesthesia delivery system to operate in a number of different modes, each based on a parameter priority capable of automatically switching between control priority modes based on a target fresh gas flow rate. It would ther

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for rapid control of set inspired gas... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for rapid control of set inspired gas..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for rapid control of set inspired gas... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2473761

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.