Method and apparatus for providing radio access bearer services

Telecommunications – Transmitter and receiver at separate stations – Plural transmitters or receivers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C455S552100, C455S516000

Reexamination Certificate

active

06668175

ABSTRACT:

The invention is concerned with a method and an apparatus for providing radio access bearer services in a network comprising a core network and a radio access network on radio access bearers between said networks. It is suitable for sending real-time services of different applications.
DESCRIPTION OF BACKGROUND ART
The operators, which administrate a telecommunications network can offer both complete telecommunications services or only bearer services. The bearer services are transport systems for the communication, whereas the telecommunications services also include functions for connection and rules for the communication.
A telecommunication service can be a basic service (as for example speech) or an application service (as for example an information data base) or an additional service (which can be a modified basic service). The telecommunication services are classified on the basis of the form they are presented in for the users, such as speech, data, video and multimedia.
Transparence is needed to send all these services through the network. A good transparence means that the delays through the coupling components in the network are minimized, that the information flow stays intact and that the bandwidth needed for the sending is available. The three most important parameters in connection with transparence are thus bandwidth, bit error and delay. The requirements on bandwidth for speech, video and data differ from each other. Video transmission e.g. sets special requirements on the networks, due to the maximal variation in delay allowed. For high quality video transmission it is required that the variations in delay are small, sometimes not more than a few milliseconds.
Different transfer modes, such as the circuit mode and the packet mode exist for transmission of the information of different services. In the circuit mode, the information is sent in time frames of given lengths. In the packet mode, the information is divided into packets with address headers for the transport through the network. It is more and more usual that the information sent changes transfer mode on the way through the network. The aim in the future is a transmission of different types of services in the same network independently of bandwidth and transfer mode.
The communication through the networks is carried out in accordance with certain agreed rules called protocols. TCP/IP is a set of protocols for packet mode used over the Internet, which is the world wide network connecting different computer networks in the whole world. The main task of the IP protocol is the addressing. The TCP protocol takes for instance care of the sequencing and flow control between the hosts.
In a communication there are two phases, the coupling and the session. In a telephone call, the conversation itself is the session. In other types of communication, the session phase is the phase during which data is transmitted between the users.
A telecommunications network is divided into the access network and the core network. The access network is the part connecting the subscriber and the local station, whereas the connections between the local stations define the core networks.
In a mobile telecommunications system, there are regularly positioned local base stations within a service area. Such an area is divided into cells with one base station for each cell. A mobile station within a radio access network communicates with the geographically closest local base station in the service area. Communication with the fixed core network thus takes place through the radio access network.
Cellular systems today are experiencing a tremendous increase. In the beginning of 90s, the major service for wireless users was speech. Speech is a real time, delay-sensitive service and the techniques used in cellular voice communication are in many aspects copied from the fixed telecommunication networks. Thus, the cellular systems are traditionally circuit-switched and communication channels across the radio interface are defined as dedicated channels.
However, recently other types of services have started to emerge in the cellular world. These are data services with rather varying requirements on the radio bearer in radio communication with respect to e.g. delay and bandwidth. The common denominator for such services is that they can take advantage of using the packet data based type of transmission.
Actually, that trend has also started on the fixed side with the tremendous growth of Internet in recent years. The TCP/IP protocol suite is the main platform for such packet data based infrastructure where different application services (communication services) are being run onto, including even voice. E-mail, Internet browsing and video conferencing are just examples of such new application services. IP is a packet mode service and offers “best effort delivery” meaning that the connection cannot be guaranteed.
Communication services between different systems can be used by means of applications. By using standardized applications, data can be changed in different systems in a simple way. The applications use TCP (The Transmission Control Protocol) or UDP (The User Datagram Protcol) as media. Examples of applications are SMTP (Simple Mail Transfer Protocol), SNMP (Simple Network Management Protocol), WHOIS (a catalogue database), NTP (Network Time Protocol), HTTP (Hyper Text Transfer Protocol) and WWW (a network of information databases). These applications are described more in detail in different RFC (Request for Comments) recommendations or they are specific for the actual service provider. The session traffic flows are of different lengths depending on application. In the future, there will be much more application services in form of voice, pictures, security etc.
Packet data based services provide opportunities to multiplex a number of users on the same communication channel and transmit information more efficiently (in terms of data throughput) than the circuit switched networks. A key feature of the radio interface is the possibility to transport multiple parallel services with different quality requirements on one connection.
Different applications sent across the interface between the core network and the radio access network require different radio access bearers for the service they provide. For packet data based services, there exists a number of attributes characterizing the radio access bearer services and a negotiation protocol across the interface between the core network and the radio access network. The performance of the application depends on these attributes for the bearer service, which may involve bandwidth, quality of service, peak bit rate, minimum bit rate etc.
Standardization of third generation mobile communication systems is now rapidly progressing in all major regions of the world. These systems, which are called IMT-2000 within ITU (International Telecommunications Union) and UMTS (Universal Mobile Telecommunications System) within ETSI (European Telecommunications Standards institute), will extend the services provided by current second generation systems, e.g. GSM, with high-rate data capabilities. The general system architecture of UMTS/IMT-2000 includes User Equipment (UE), UMTS Terrestrial Radio Access Network (UTRAN) and the Core Network. Furthermore, the general architecture includes two general interfaces of which the Iu interface is between UTRAN and the Core network and the Uu interface is between UTRAN and the user equipment.
The evolution of UMTS is just taking place and there is no finished concept on how the radio access bearer service negotiation should be performed across the Iu interface on basis of which the radio access bearers are granted. The concepts for evolving packet data based cellular solutions are also needed for other cellular systems like for example GPRS (General Packet Radio Services).
The radio access network part of the network provides radio access bearer services for the core network upon demand. Certain issues have to be taken into consideration, if packet data traffic is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for providing radio access bearer services does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for providing radio access bearer services, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for providing radio access bearer services will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3165123

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.