Surgery – Respiratory method or device – Means for supplying respiratory gas under positive pressure
Reexamination Certificate
2000-07-06
2003-08-26
Lewis, Aaron J. (Department: 3761)
Surgery
Respiratory method or device
Means for supplying respiratory gas under positive pressure
C128S204210, C128S204180
Reexamination Certificate
active
06609517
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to methods and apparatus for treating breathing and/or cardiac disorders and, more particularly, to methods and apparatus for providing a pressure to an airway of a patient during at least a portion of the breathing cycle to treat obstructive sleep apnea syndrome, chronic obstructive pulmonary disease, congestive heart failure, and other respiratory and/or breathing disorders.
2. Description of the Related Art
During obstructive sleep apnea syndrome (OSAS), the airway is prone to narrowing and/or collapse while the patient sleeps. Continuous positive airway pressure (CPAP) therapy seeks to avoid this narrowing by supplying pressure to splint the airway open. With CPAP, this splinting pressure is constant and is optimized during a sleep study to be sufficient in magnitude to prevent narrowing of the airway. Providing a constant splinting pressure, i.e., CPAP, is a simple solution to the problem posed by the collapsing airway. However, this approach exposes the patient to pressures that are higher than the pressures needed to support the airway for most of the breathing cycle.
During inspiration, the pressure created within the lungs is lower than the pressure at the nose. This pressure difference drives the flow of air into the lungs. This pressure difference creates a pressure gradient in the airway connecting the lungs with the nose. That is to say, the nose is typically at ambient pressure while the lungs and airway of the patient are at sub-ambient or negative pressures. This negative pressure acts upon the airway and contributes to its collapse. CPAP levels are typically set to raise the pressure level in the entire respiratory system to the level required to both eliminate the sub-ambient pressures generated by inspiration and overcome any mechanical collapsing forces that result from the structure of the airway tissues, muscle tone, and body position. The inspiratory pressures , i.e., inspiratory positive airway pressure or “IPAP,” in bi-level positive airway pressure systems are set in a similar manner.
During exhalation, a positive pressure gradient exists between the interior of the lungs and the exterior of the body. This positive pressure gradient helps to support the airway during exhalation. At the end of exhalation, the pressure gradient is essentially zero; flow is likewise zero and the airway is unaffected by respiratory efforts. Any collapse of the airway at the end of exhalation is purely a function of the structure of the airway tissues, muscle tone, and body position. Bi-level devices seek to supply the expiratory pressure required to support the airway at the end of exhalation.
It should be noted that over the course of a breathing cycle, the pressure gradients between the lungs and the exterior of the body are not constant. The inspiratory pressure gradient falls from zero at the start of inspiration to a peak negative value and then rises back to zero at the end of inspiration. The expiratory pressure gradient rises from zero at the start of exhalation to a peak value and then falls back to zero as exhalation ends. Because the pressure gradient varies over the breathing cycle, the pressure necessary to overcome airway collapse should ideally vary over the breathing cycle.
Traditional CPAP therapy ignores these variations in pressure requirements and provides therapy at one pressure level. Conventional CPAP is rather crude and offers far from optimal therapy since the CPAP pressure is based solely on a worst-case treatment parameter, i.e., the peak pressure requirements during inspiration.
Representing an advancement over conventional CPAP, bi-level positive airway pressure (bi-level PAP) therapies seek to take advantage of the different pressure requirements to lower the pressure during exhalation. Nevertheless, bi-level therapies also fail to afford optimal treatment because the inspiratory positive airway pressure (IPAP) of bi-level PAP is again based on the patient's peak needs encountered during inspiration and remains constant over the entire inspiratory phase respiration. Also, during bi-level treatment, the expiratory position airway pressure (EPAP) remains constant and is related solely to the support needs at the end of exhalation.
In addition to OSAS, positive airway pressure therapy, such as bi-level PAP therapy, has been applied in the treatment of other breathing disorders, such as chronic obstructive pulmonary disorder (COPD). One of the problems with this mode of treatment, however, is that the patient has difficulty stopping inspiratory flow. This phenomenon arises due to the disparity between applied IPAP and the pressure needed to overcome the patient's respiratory resistance at the end of inspiration. As the former pressure typically exceeds the latter, the “surplus” IPAP at the end of inspiration leads to uncomfortable and potentially harmful hyperinflation of the patient lungs.
Conversely, in order to begin inspiratory flow, a COPD patient must reduce the pressure inside his lungs to a pressure that is less than the ambient pressure at the inlet of his respiratory system. Due to the condition commonly known as “Auto-PEEP,” the pressure in the patient's lungs is typically above ambient pressure at the end of exhalation. The patient's breathing muscles thus must perform additional work to expand the lungs and thereby reduce lung pressure below ambient before flow into the lungs can occur. Auto-PEEP is typically treated with a form of resistive counter pressure known as PEEP (positive end expiratory pressure). PEEP is set at a level just below the patient's Auto-PEEP level, thereby reducing the amount of breathing work required to initiate inspiratory flow.
With conventional treatments, such as pressure support, CPAP or bi-level therapy, PEEP is achieved by applying the same pressure over the entire phase of expiration, e.g., the EPAP phase of bi-level PAP therapy. It should be noted that EPAP is not synonymous with PEEP. EPAP indicates a constant pressure delivered to the patient throughout exhalation, while PEEP indicates positive end expiratory pressure. By definition, the PEEP pressure is only required at the end of exhalation. As such, the administration of EPAP throughout the expiratory cycle to assure that satisfactory PEEP is maintained undesirably contributes to the breathing work that a patient must perform during exhalation.
In addition to CPAP and bi-level PAP, other systems have been proposed for clinical research and/or therapeutic application, including treatment of OSAS, COPD and other breathing disorders, that offer an assortment of methods and apparatus by means of which a subject's respiratory efforts may be induced, superseded, assisted and/or resisted. Some of these systems perform their prescribed functions responsive to one or more parameters associated with a subject's respiratory activity including, but not limited to, inspiratory and/or expiratory flow, inspiratory and/or expiratory pressure, tidal volume and symptoms indicative of airway obstruction, e.g., snoring sounds. Some achieve their objectives transthoracically while others deliver air at positive or negative pressure directly to the subject's airway.
An early example of such a system, commonly referred to as an “iron lung,” is disclosed in a publication entitled “Mechanical Assistance to Respiration in Emphysema, Results with a Patient-Controlled Servorespirator,” authored by James R. Harries, M.D. and John M. Tyler, M.D., published in the American Journal of Medicine, Vol. 36, pp. 68-78, January 1964. The iron lung proposed in that publication is a respirator designed to apply and remove transthoracic pressure to and from the exterior surface of the body of a subject who sits in a large pressurizable chamber in order to assist the patient's respiratory efforts (i.e., the iron lung applies negative pressure during inspiration and either ambient or positive pressure during expiration). Sophisticated for its day, th
Estes Mark C.
Fiore John H.
Machlenburg Douglas M.
Haas Michael W.
Lewis Aaron J.
Respironics Inc.
LandOfFree
Method and apparatus for providing positive airway pressure... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for providing positive airway pressure..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for providing positive airway pressure... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3103188