Method and apparatus for providing optical anisotropy to...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Treating polymer containing material or treating a solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C349S117000, C349S119000, C359S494010, C359S506000

Reexamination Certificate

active

06512085

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of and an apparatus for greatly inducing and fixing a photoinduced anisotropy (reorientation, birefringence and dichroism) of a medium by the irradiation of polarized light, as well as a photoinduced anisotropic medium prepared therewith and, particularly, it relates to a method of and an apparatus for preparing liquid-crystal-aligning films, wave plates, phase retarders, optical waveguides, non-linear optical elements and optical recording media by bit recording or holographic recording, as well as photoinduced anisotropic media thereof.
2. Description of the Related Art
The technique of orienting organic materials in solid state films have been studied vigorously in the application field of optoelectronics such as liquid-crystal-aligning films, as well as wave plates, phase retarders, diffraction gratings, optical waveguides, non-linear optical elements and optical recording. Among them, a method of controlling the orientation by the irradiation of polarized light has been noted particularly in recent years since this is a non-contact orientation method and capable of easily forming an optional orientation pattern in the film and has a possibility of application to optical devices utilizing active orientation change with light.
When a polarized light is applied to dichroic molecules in a state where molecular motion is restricted, only the molecules with the polarization axis and the transition dipole moment being aligned are excited selectively to cause optical anisotropy. This phenomenon is referred to as Weigert's effect and reported in the 1920s. This is explained, for example, to azobenzene as a photoisomerizable molecule. Azobenzene shows trans-cis isomerization under the irradiation of light. It takes a molecular structure as shown in the chemical formula (a) in the trans-form, while a molecular structure as shown in the chemical formula (b) in the cis-form.
Azobenzene shows anisotropy as an individual single molecule. But a film prepared by coating from a solution in a state they are bonded or dispersed in a polymer shows isotropy as a whole reflecting the isotropic conformation of the solution (refer to FIG.
1
A). When a linearly polarized light at a wavelength to which azobenzene is sensitive is applied, only the molecules of azobenzene arranged in the direction identical with the polarizing direction absorb light due to the dichroism of azobenzene and are isomerized into a cis-form. Since the isomerized cis-form is thermally unstable, it is again isomerized into a transform by thermal back reaction. The trans-form in this case can be in any of orientation states identical with or perpendicular to the polarization direction (polarization axis), but the trans-form in the direction identical with the polarizing direction changes again by photoisomerization into the cis-form and, subsequently, is isomerized again into a trans-form by thermal back reaction. In the process of repeating the trans-cis-trans isomerization cycle defined by the polarization direction, change of orientation is caused in the direction of less absorption to the exciting polarized light (perpendicular direction to the polarization axis) (refer to FIG.
1
B). In this case, change of the orientation of the polymer is induced by the isomerization and the change of orientation of azobenzene in addition to the change of the orientation of azobenzene to cause large anisotropy in the medium with the polarization direction as an axis (or in perpendicular thereto).
A method of manufacturing a liquid-crystal-aligning film or wave plate (optical phase retarder) utilizing such photoinduced anisotropy is proposed, for example, in Japanese Published Unexamined Patent Application No. Hei 11-231133. Further, as an optical recording method utilizing the recording characteristic of the photoinduced anisotropy, a holographic recording method (Japanese Published Unexamined Patent Application No. Hei 10-340478) or polarization multi-level recording (Japanese Published Unexamined Patent Application No. Hei 11-238251) are also proposed. Further, there are various application uses such as manufacture of optical waveguides or optical switches utilizing the change of refractive index by orienting non-linear chromophore such as azo dyes by irradiation of polarized light. In such cases, it is important to obtain a large birefringence by inducing and maintaining high orientation.
As a method of inducing higher orientation, in the method of light orientation using irradiation of polarized light, a method of using irradiation of polarized light together in the orientation by electric fields (Photoassisted Electrical Poling: PAEP) is proposed (Z. Sakkat, et al. “Photoassisted poling of azo dye doped polymeric films at room temperature”, Appl. Phys. B54, 486-489 (1992)). However, since an electrode is required in contact with the film surface for efficiently applying the electric field or it is difficult to form a fine optional orientation pattern, it is not practical in the application, for example, to liquid-crystal-aligning films or diffraction gratings.
As another method, Japanese Published Unexamined Patent Application No. Hei 11-160708 discloses a method of producing an oriented resin film of applying a linearly polarized light or a non-polarized light in an oblique direction and then further applying a heat treatment. This enables to transform the polymer into a liquid crystal or crystalline state and highly stabilize the orientation by the heat treatment. This is explained as a mechanism that the effective cooperative works among the polar and rigid azobenzene moieties induces a large orientation (K. Ichimura, et al. “Thermally stable photoaligned p-cyanoazobenzene moieties in polymer thin films”, Macromol. Symp. 137, 129-136 (1999)).
However, since scattering attributable to the liquid crystal or crystalline state forms noises for optical elements in the application for thick films, for example, volume holographic memory, this is not suitable to polymers that have a liquid crystalline phase or a high crystalline property. Further, it is difficult to stabilize polymers that have no liquid crystalline phases or a low crystalline property by the heat treatment described above.
FIG. 2
shows a result of preparing a film by using a polyester (refer to Chemical Formula 5), applying a linearly polarized light to a region of 1 mm&phgr; thereby inducing and recording birefringence and applying a heat treatment to such a film to be described later. The effect of enhancing the orientation by the heat treatment is scarcely observed and it can be seen that the induced birefringence is remarkably attenuated at a temperature higher than the glass transition temperature (T
g
=38° C.) of this polymer. Further, since the effect of enhancing the orientation by this prior art essentially relies on the intermolecular force, it is considered that the effect is higher for uniform orientation in one direction but it is difficult to enhance fine orientation distribution at the submicron order by heat treatment.
When the change of the refractive index is applied to a wave plate, the thickness of the element can be reduced as the birefringence is larger and noises such as aberration depending on the element can be reduced. When a waveguide is manufactured, more modes can be propagated as the change of the refractive index is larger. Further, when manufacturing an optical switch having a waveguide layer in which non-linear chromophore such as an azo dye is oriented, second or third non-linearity can be increased by high orientation. Considering the application to the holographic memory, the recording multiplicity can be increased as the change of the refractive index is larger, and larger capacity memory can be attained. Also in the invention of a polarization multi-level recording (Japanese Published Unexamined Patent Application No. Hei 11-238251), if the change of the refractive index can be made larger, the thickness of the recordin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for providing optical anisotropy to... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for providing optical anisotropy to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for providing optical anisotropy to... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3039010

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.