Multiplex communications – Communication techniques for information carried in plural... – Combining or distributing information via time channels
Reexamination Certificate
1999-12-28
2004-12-07
Hsu, Alpus H. (Department: 2665)
Multiplex communications
Communication techniques for information carried in plural...
Combining or distributing information via time channels
C370S466000
Reexamination Certificate
active
06829254
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates in general to IP telephony, and more particularly to method and apparatus for providing efficient application-level switching for multiplexed Internet Protocol media streams.
2. Description of Related Art
Traditionally, voice has been carried over circuit switched networks (CSN) that are designed especially for transmitting voice, e.g. PSTN and GSM. During the past twenty years, telephone systems have steadily improved and changed as businesses became dependent upon reliable communication that could overcome barriers of time and distance. As a result, enterprise-wide communications platforms have been developed to deliver a broad range of telephony services. The networking services available on these platforms include automatic least-cost routing and class-of-service routing, and applications such as voice mail, mobility and call centers.
During this same time period, packet switching also grew to provide reliable and easy-to-use file transfer, transaction processing and information access. Packet switching systems were first implemented as proprietary systems running over private lines. However, today packet switching has evolved into standards-based, virtual-circuit networks, e.g., frame relay and Asynchronous Transfer Mode (ATM), and the Internet Protocol. The development and wide implementation of Ethernet in the 1980s led to bridges and routers and, more recently, local area network (LAN) switching. Transfer speeds have increased, prices have decreased and there are now more than 200 million Internet and Ethernet users worldwide.
Currently, there is a lot of interest for the transmission of voice over packet switched networks (PSN). The next big development in telecommunications will be combining the Internet with mobile phones and other devices such as personal digital assistants (PDAs). Soon consumers will be using small communication devices that combine features such as mobile telephones, Internet terminals, music systems, video systems, cameras, etc. Further, the Internet and the growing convergence around the Internet Protocol (IP) present great opportunities for businesses to capture new markets, serve customers better, reduce costs and improve productivity.
The biggest challenge facing IP telephony will be accommodating business-critical applications. They include call centers, Interactive Voice Response (IVR), and other speech-activated applications, mobility and single-number roaming services, and unified messaging.
These types of applications accentuate the need for IP telephony to address the difficult issue of transmission quality. Over time, the telephone network has become very reliable and delivers consistently high-quality service. In contrast, on today's intranets and the public Internet, the quality of service is virtually nonexistent. File download times and the time required to pull up a web site varies, and the time for e-mail to reach its intended destination is dependent upon many network factors. Increasing the bandwidth of Internet links has been the focus of most efforts to improve the quality of service. However, increasing bandwidth is only a partial fix for the short term. In the long run, other strategies are required.
At present, IP networks offer a single class of service called best effort, which can not guarantee any Quality of Service (QoS) to applications. To support delay sensitive applications such as voice and interactive multimedia, there have been many proposals submitted to the Internet Engineering Task Force (IETF) on how to integrate QoS in IP networks. These proposals include differentiated service (diff-serv), Integrated services (Int-serv) and Multi Protocol Label Switching (MPLS). Despite these efforts, QoS in IP is still elusive and could take some time before it is deployed over global Internet.
As suggested above, IP telephony has emerged as a potential application to challenge the traditional phone companies by offering long distance telephone service over Internet for low prices. There are a large number of equipment vendors offering IP telephone gateways and accessories to provide IP telephony service to corporate customers and Internet Service Providers (ISPs). IP telephone standards such as H.323, Session Initiation Protocol (SIP), and Media Gateway Control Protocol (MGCP), have been standardized to enhance the rapid deployment of IP telephone services in the global Internet. Even though, IP telephone is not a reality in the public Internet today, it has been more successful in Intranet and Virtual Private Networks (VPN) environments.
In trials, IP telephone services have been demonstrated to have the potential to match the voice quality offered by traditional telephone networks. As a result, the growth of IP telephone gateways in corporate and ISP environments is expected to increase exponentially in the coming years. IP telephone gateways act as an interface between the existing PSTN and PBX networks and IP networks. This method allows one PSTN user to call another PSTN user connected through IP telephone gateways thus eliminating the need for long distance telephone network.
In a IP telephony connection, two sides of the PSTN/PBX users (two branches of the same company) are interconnected by IP telephone gateways. In such application, a telephone call between two PSTN/PBX users located at either side of the gateways is carried by a separate Real-time Transport Protocol/User Datagram Protocol/Internet Protocol (RTP/UDP/IP) connection. RTP is an Internet protocol for transmitting real-time data such as audio and video. RTP itself does not guarantee real-time delivery of data, but it does provide mechanisms for the sending and receiving applications to support streaming data. Typically, RTP runs on top of the UDP protocol, although the specification is general enough to support other transport protocols. The User Datagram Protocol is a connectionless protocol that, like TCP, runs on top of IP networks. Unlike TCP/IP, UDP/IP provides very few error recovery services, offering instead a direct way to send and receive datagrams over an IP network.
IP telephony gateways provide an interface between the existing circuit switched telephone networks (such as PSTN and GSM) and the packet switched IP data networks. In traditional IP telephony applications, telephone calls between PSTN users interconnected by a pair of IP telephony gateways to compress incoming PSTN speech generate speech frames with sizes ranging from 5 to 20 octets per speech frame.
For example, G.723.1 (the most popular IP telephony codec and the International Multimedia Teleconferencing Consortium's (IMTC) Voice over IP (VoIP) mandatory low bit-rate codec), generates a 20 byte speech packet at 30 ms intervals. Many codecs used in cellular environment generate less than 10 byte packet per speech sample. Small size packets are subjected to large overhead when transferred using the Real time Transport Protocol (RTP). The RTP/UDP/IP overhead is 40 bytes (12+8+20) for a simple speech packet. For example, a 10 byte packet transferred via RTP/UDP/IP increases the overhead to 80% (40 byte overhead/50 byte overhead plus packet). In addition, for each call request a single UDP/IP connection (a pair of UDP ports) is established between the gateways requiring a large state (memory) to be maintained at the telephony gateways, thereby making these less scaleable.
Congestion in IP networks results in packet loss at routers and UDP does not have any retransmission mechanism to recover lost packets. Also, real time applications such as speech is intolerant to delay caused by re-transmission. In traditional RTP method, each individual speech frame is transmitted as a IP packet, which generates a large number of packets between gateways. This heavy traffic volume is a potential situation for congestion and packet loss at IP routers.
To overcome these this problem, an efficient real-time transport protocol multiplexing method and apparatus for transporting compressed speech betw
Pekka Pessi
Rajahalme Jarno
Hsu Alpus H.
Nguyen Toan
Nokia Internet Communications Inc.
Squire Sanders & Dempsey L.L.P.
LandOfFree
Method and apparatus for providing efficient... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for providing efficient..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for providing efficient... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3277599