Method and apparatus for providing dilution air to a blower...

Pumps – Processes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S366000, C122S017200

Reexamination Certificate

active

06231311

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to draft inducers for hot water heaters. More particularly, the present invention relates to blower designs for cooling electric motors placed inside blower housings.
2. Description of Related Art
Typical blower housing and motor assemblies, particularly with respect to centrifugal fans having radial-flow impellers, are configured with the motor being attached to an end of a circular or scroll-shaped blower housing. The motor's shaft extends axially into the housing where an impeller, confined by the blower housing, is attached to the motor shaft. The blower housing typically has one inlet and one outlet. Combustion gases are drawn into the housing by the rotating impeller which expels the gases through the outlet into a flue or similar avenue of exit.
With respect to motor cooling, the gases that are forcibly moved through the housing by the impeller do not come into contact with the motor. Thus, blower activity does not in any way contribute to the cooling of the motor.
Due to the inevitable generation of heat by an operating motor, a means for cooling the motor during operation is needed. Conventional blower/motor assemblies have one or two auxiliary fans attached to the rotor to draw motor-cooling air into the motor housing. Vents are provided in the motor housing to enable air infiltration. The incoming air is channeled around the motor windings and out the same vents.
Another approach for providing cooling air to a blower motor is described in U.S. Pat. No. 5,352,099 to Anstine et al. In the '099 patent, a blower having an optional one-piece motor/impeller housing with a cover is suspended above the flue pipe of a water heater with brackets. The inlet of the blower housing is situated in axial alignment with the water heater exhaust flue. Vents situated in the motor portion of the blower housing allow cooling air to be drawn over the motor and expelled out an outlet through which the exhaust gases drawn into the blower are also expelled.
This approach to introducing cooling air into the blower has numerous problems which effect both the overall efficiency of the blower and the ability to effectively cool the motor. By having the blower housing suspended over the flue pipe, it is very difficult to establish the negative pressure necessary to draw in the flue gases for expulsion from the water heater. The lack of negative pressure results from the lack of a containment area or enclosure that enables the rotating impeller to generate the necessary negative pressure.
An additional problem encountered with the '099 patent design is the inability to control standby losses when there is no demand placed on the water heater. With the flue open to the atmosphere, i.e, below the blower, absent blower activity, flue gases and heat generated during standby cannot be controlled.
A further problem is the inability to control the dilution air flow. The “open” concept of the '099 patent suspended blower design prevents any appreciable control over the flow of dilution air other than by altering the rotational velocity of the impeller. Altering impeller velocity, however, can have a negative effect on efficiency.
Although numerous blower housing designs have been developed to address motor cooling, none to date have the capability to provide a controlled amount of cooling air to the blower motor without the need for auxiliary fans attached to the motor. None have devised a blower housing that is easy and cost-effective to manufacture such that the dilution air flow can be controlled to balance the need for exhaust gas expulsion and the need for motor cooling. None have devised a blower housing that can accomplish these tasks as well as provide ease of assembly and disassembly for maintenance purposes. A way to provide all these advantages has now been developed.
It is, therefore, an object of the present invention to provide a blower housing assembly that reduces the number of components necessary to provide a functioning blower. The need for separate motor and impeller housing is obviated.
Another object of the present invention is to provide a blower housing that allows the negative pressure generated by a rotating impeller to draw cooling or dilution air into the motor chamber to cool the motor.
An additional object of the present invention is to provide a blower housing with a skirt extending past a blower housing cover for attachment to the top of a hot water heater to facilitate and maximize the potential to draw exhaust gases out of and away from the hot water heater.
A further object of the present invention is to provide a blower housing design that allows for the control of dilution air added to the exhaust gases emanating from a hot water heater to reduce the overall temperature of the mixed gases to an acceptable level.
A still further object of the present invention is to provide a cost-effective blower housing that is easy to manufacture and requires no additional parts beyond a housing body and a housing cover. These and other objects of the invention will be made apparent from a review of the drawings and a reading of the following summary and detailed description of the invention.
SUMMARY OF THE INVENTION
The blower housing assembly described herein includes a blower housing that confines both a motor and impeller in one continuous unit. In one embodiment, the blower housing is formed with apertures to receive the inlet and outlet water pipes of a hot water heater. In a second embodiment, the blower housing is sized to fit between the pipes.
The one-piece blower housing has a first chamber for receiving a motor and a second chamber for receiving an impeller. The first and second chambers are in fluid communication. The first chamber has at least one vent slot provided therein to provide ingress for dilution air. The slot is situated on a top surface of the first chamber but may be situated in a circumferential wall of the chamber.
The impeller is fixed to a motor shaft attached to a rotor of the motor. The impeller has a backplate with apertures. The apertures place the first chamber and second chamber in fluid communication. Negative pressure generated in the second chamber by rotation of the impeller causes air to be drawn into the second chamber from the first chamber which, in turn, creates a negative pressure in the first chamber. The negative pressure in the first chamber draws cooling air into the first chamber via the at least one vent slot.
The blower housing has portions which define an outlet. The outlet is formed so that it is in fluid communication with the second chamber. The outlet provides egress for exhaust gases emanating from a hot water heater to which the blower is designed to be attached.
A blower housing cover is provided which is attached to the blower housing at an intermediate location along a side wall of the blower housing. The blower housing cover has portions which define an inlet aperture to allow air and/or exhaust gases from a hot water heater to enter the second chamber.
The housing side wall extends beyond the cover and forms a skirt. At least one skirt vent slot is provided in the skirt. The skirt has portions adapted for securing the blower housing to the top of a hot water heater. The combination of the skirt, the blower housing cover and the top of the water heater form a third chamber within which a flue pipe of the hot water heater is confined.
The third chamber enables and facilitates the control of dilution air entering the at least one skirt vent slot. These and other objects and features of the present invention will be apparent from a review of the drawings and a reading of the following detailed description of the invention.


REFERENCES:
patent: 2188741 (1940-01-01), Roberts
patent: 3777975 (1973-12-01), Kofink
patent: 4225292 (1980-09-01), Hallerback et al.
patent: 4475868 (1984-10-01), Renger
patent: 4799855 (1989-01-01), Milocco et al.
patent: 5277232 (1994-01-01), Borsheim
patent: 5352099 (1994-10-01), Anstine et

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for providing dilution air to a blower... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for providing dilution air to a blower..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for providing dilution air to a blower... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2499159

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.