Method and apparatus for producing electrophotographic...

Cleaning and liquid contact with solids – Processes – Hollow work – internal surface treatment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C134S034000, C148S275000, C148S279000, C427S424000, C427S427000, C118S300000, C118S314000, C118S315000

Reexamination Certificate

active

06406554

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method of producing an electrophotographic photosensitive member, comprising a functional film.
2. Description of the Related Art
As a substrate for forming a deposited film of an electrophotographic photosensitive member, glass, heat-resistant synthetic resins, stainless steel, aluminum, and the like have been proposed. However, in order to perform an electrophotographic process comprising charging, exposure, development, transfer, and cleaning, and to keep positional precision at a constant, high level to maintain high image quality, a metal is frequently used for practical applications. Particularly, aluminum has good workability, is inexpensive and lightweight, and is thus an optimum material as a substrate for the electrophotographic photosensitive member.
Techniques for forming substrate materials for the electrophotographic photosensitive member are disclosed in Japanese Patent Laid-Open Nos. 59-193463 and 60-262936.
Jananese Patent Laid-Open No. 59-193463 discloses a technique in which a supporting member comprises an aluminum alloy containing 2000 ppm or less of iron (Fe) to obtain an electrophotographic photosensitive member comprising amorphous silicon which is capable of forming images with good quality. This publication also discloses a procedure comprising cutting a cylindrical substrate by a lathe to a mirror surface, and then forming amorphous silicon by glow discharge.
Japanese Patent Laid-Open No. 60-262936 discloses an extruded aluminum alloy having the excellent property of vapor deposited amorphous silicon and comprising 3.0 to 6.0 at % magnesium (Mg), impurities composed of manganese (Mn) suppressed to 0.3 wt % or less, chromium (Cr) suppressed to less than 0.01 wt %, Fe suppressed to 0.15 wt % or less, and silicon suppressed to less than 0.12 wt %, and the balance comprising Al.
The substrates comprising these materials are subjected to surface processing to form a light receiving layer on the surfaces thereof according to application of the electrophotographic photosensitive member. Techniques for surface processing these substrates are disclosed in Japanese Patent Laid-Open Nos. 61-231561 and 62-95545. As a technique for preventing corrosion in a water washing step when an aluminum alloy is used as the substrate, Japanese Patent Laid-Open No. 6-273955 discloses a technique in which a substrate is washed with water containing dissolved carbon dioxide. However, this publication does not disclose that the film thickness and the composition ratio are defined in predetermined ranges by using water containing a specified inhibitor.
Japanese Patent Laid-Open Nos. 63-311261 and 1-156758 and Japanese Patent Publication No. 7-34123 disclose techniques for forming an oxide film on an Al substrate, but do not disclose that a film is formed after washing with water containing an inhibitor containing specified components.
Japanese Patent Laid-Open No. 3-205824 discloses the technique of washing by injecting high pressure, but discloses neither washing by using a ring comprising nozzles set to specified conditions, nor washing with water containing a specified inhibitor. Japanese Patent Laid-Open No. 8-44090 discloses that an electrophotographic photosensitive member is formed by using a substrate subjected to surface treatment with a silicate solution, but discloses neither washing by using a ring comprising nozzles set to specified conditions, nor washing with water containing a specified inhibitor.
As materials used for the electrophotographic photosensitive member, various materials have been proposed, which include selenium, cadmium sulfide, zinc oxide, amorphous silicon, organic materials such as phthalocyanine, and the like. Particularly, a non-single crystal deposited film containing a silicon atom as a main component represented by an amorphous silicon film, for example, an amorphous deposited film composed of amorphous silicon which is compensated by hydrogen and/or halogen (e.g., fluorine, chlorine, or the like), has been proposed for a pollution-free photosensitive member having high performance and high durability; some of such materials have been put into practical use. Japanese Patent Laid-Open No. 54-86341 discloses a technique for an electrophotographic photosensitive member comprising a photoconductive layer mainly made of amorphous silicon.
Conventional methods of forming such a non-single crystal deposited film containing a silicon atom as a main component include a sputtering method, a method (thermal CVD method) of thermally decomposing raw material gases, a method (optical CVD method) of optically decomposing raw material gases, a method (plasma CVD method) of decomposing raw material gases by a plasma, and the like.
The plasma CVD method, i.e., the method of decomposing raw material gases by radio frequency or microwave glow discharge to form a deposited thin film on a substrate, is optimum as the method of forming an electrophotographic amorphous silicon deposited Film, and practical use thereof is in progress at present. Particularly, the plasma CVD method comprising decomposition by microwave glow discharge, i.e., the microwave plasma CVD method, has recently attracted attention as the method of forming a deposited film in the industrial field.
The microwave plasma CVD method has the advantages that the deposition rate and efficiency of utilization of raw material gases are higher than the other methods. U.S. Pat. No. 4,504,518 discloses an example of microwave plasma CVD techniques taking advantage of this method. The technique disclosed in this U.S. patent comprises forming a deposited film having high quality at a high deposition rate by the microwave plasma CVD method under low pressure of 0.1 Torr or less.
Furthermore, Japanese Patent Laid-Open No. 60-186849 discloses a technique for improving the efficiency of utilization of raw material gases in the microwave plasma CVD method. The technique disclosed in this publication comprises arranging a substrate so as to surround a means for introducing microwave energy to form an inner chamber (i.e., a discharge space), thereby significantly improving the efficiency of utilization of raw material gases.
Japanese Patent Laid-Open No. 61-283116 discloses a modified microwave technique for producing a semiconductor member. Namely, this publication discloses a technique in which an electrode (a bias electrode) for controlling plasma potential is provided in a discharge space so that in film deposition, a desired voltage (a bias voltage) is applied to the bias electrode to control ion attack on the deposited film, thereby improving the characteristics of the deposited film.
Specifically, when an aluminum alloy cylinder is used as the substrate, the method of producing an electrophotographic photosensitive member by the above-described techniques is carried out as follows.
The aluminum alloy cylinder is processed to flatness in the predetermined range by diamond tool cutting using a lathe, a milling lathe, or the like according to demand, and then washed with triethane. After triethane washing, a deposited film mainly composed of amorphous silicon is formed as a deposited film of the photoconductive member on the substrate by a glow discharge decomposition method. The thus-obtained deposited film is used for producing the electrophotographic photosensitive member.
However, the electrophotographic photosensitive member produced by the above techniques has an abnormal growth portion in the deposited film, which creates a small area in which a surface charge is difficult to load. This phenomenon significantly occurs, particularly, in the case of an electrophotographic photosensitive member comprising a deposited film such as an amorphous silicon film, which is formed by the plasma CVD method. However, the area where surface potential is barely loaded can be minimized by optimizing surface processing conditions, washing conditions, and deposition conditions for the substrate. Such an area is conventionally in a le

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for producing electrophotographic... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for producing electrophotographic..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for producing electrophotographic... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2942513

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.