Method and apparatus for predicting and detecting ovulation

Surgery – Diagnostic testing – Monitoring fertility cycle

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06468223

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a method and apparatus for monitoring, predicting and detecting ovulation during the menstrual cycle of a human female subject and in mammals generally. More specifically, the invention relates to a method and apparatus for predicting the progress of a female subject's fertility cycle that is based on the measurement and recording of changes in the characteristics and properties of an electrical circuit that result from bringing an oral sensor that forms a part of the circuit into contact with the subject's saliva.
DESCRIPTION OF THE PRIOR ART
The importance of accurately predicting and detecting the onset of ovulation in fertile females has been recognized for many years. Such information is extremely useful as an aid to fertilization, or to prevent fertilization without the need of contraceptive devices or drugs. The art has recognized the need for a device and for a method for monitoring the ovulation cycle in the privacy of the subject's home that is simple to use, reliable, inexpensive and non-invasive.
1. REVIEW OF INFERTILITY PROBLEM IN THE U.S.
The Office of Technology Assessment (OTA), an agency of the Congress of the United States, estimated that from 2-3 million American couples want to have a baby, but either need medical help to have one or will remain unable to have one. While there has been no increase in the overall incidence of infertility in recent years demand for infertility services—mostly conventional medical and surgical rather then in-vitro fertilization (IVF) or other new technology—has steadily increased, with between 300,000 and one million couples annually seeking help. Still, as many as half of the couples seeking treatment for infertility will ultimately be unsuccessful, OTA says.
Americans spent about $1 billion on medical care to combat infertility in 1987, according to the Agency. Less then 1% of all couples seeking infertility treatments try IVF, OTA says; there was some 14,000 attempts at IVF in 1987, involving about $66 million of the $1 billion outlay.
Among infertile couples seeking treatment, 85-90% are treated with conventional medical and surgical therapy. Medical treatment ranges from instructing the couple in the relatively simple methods of pinpointing ovulation to more complex treatments involving ovulation induction with powerful fertility drugs, and artificial insemination (AI). Ovulation induction, surgery, and AI are the most widespread and successful approaches to overcoming infertility.
Two non-coital reproductive technologies—in-vitro fertilization (IVF) and gamete intrafallopian transfer (GIFT)—offer hope to as many as 10-15% of the infertile couples who could not be successfully treated otherwise. These techniques are being practiced with increasing frequency, but proficiency varies widely.
Some 10 to 80 medical teams in the U.S. have established a record of some success with artificial insemination (AI) and invitro fertilization (IVF), and proficiency with GIFT is increasing. However, the remainder of the 169 IVF/GIFT programs in this country have has little or no success to date. It is apparent that whether the infertility problem is treated with simple or complex treatments, a reliable and accurate method of pinpointing conception is a precisely timed biological event, infertility diagnosis and treatment often involve costs of time away from work, and may involve travel, hospital and hotel costs. The proposed device will reduce the time and costs to infertile couples because it allows couples to pinpoint ovulation at home with a high degree of accuracy and minimal or no medical or professional supervision.
2. REVIEW OF LITERATURE ON OVULATION PREDICTION METHODS
The task of predicting ovulation or the fertile period, therefore, appears to be quite important. One needs only to measure alterations in important to marker molecules in any of a number of biologic fluids that would define the limits of the fertile period or, specifically, ovulation. However, defining these limits involves establishing the life span of both gametes involved in the fertilization process. Estimates of sperm viability in the female reproductive tract range from 2 to 7 days. Unfortunately, good data for such estimates are scarce. In reality, the life span of the ovulated ovum has been suggested to be only as long as 72 hours. However, institutions practicing in-vitro fertilization suggest the mature ova more than 24 hours old (perhaps only 12 hours) are generally incapable of being fertilized and/or producing viable offspring, but their in-vivo life span may be considerably more. Thus, the period of fertility in most women may be from 7 days prior to ovulation to possibly 3 days after. Unfortunately, without more information about functional sperm survival in the female reproductive tract, this interval will continue to be uncertain. Good predictors of this ovulation, therefore, would mark this span of time by being able to coincidently detect changes in more then one hormone or other molecules in biological fluids. Since steroid hormones are produced by the developing graafian follicle and corpus luteum, plasma concentrations of these or their urinary metabolites would be useful markers, and measurements of either plasma or urinary LH or FSH may be helpful, since it is these alone or in combination that lead to follicular and ovum maturation and to ovulation itself. Furthermore, since estrogens and progesterone have a wide variety of biological functions, one might speculate that molecules acutely responsive to their plasma concentration may be useful as fertile period indicators. Also, one would expect that a truly specific indicator of the fertile period and/or ovulation would be a product of the dominant follicle, since it is destined to become the parent of the ovum at ovulation. Changes in electrolyte concentration in various biological fluids (saliva and vaginal mucus) have also been reported as a function of ovulation.
In addition, techniques needed to measure these changes in hormones or hormone- responsive markers must be sensitive, specific, cost-effective, easy to perform as applicable to a clinical or diagnostic setting in which sophisticated equipment is unavailable. The interval of time between samples taken for monitoring also must be considered. The efficacy of predicting the fertile period may increase with a decreasing sample-to-sample interval, and the longest interval allowed to give optimal predictability of a given variable to establish the fertile period must be clearly defined. From known rhythms of alterations in plasma, saliva, and urinary hormones, it appears that the successful monitoring of steroids, peptide, and other factors for the prediction of ovulation would require a daily, or perhaps twice daily, sampling. Under those conditions one could expect to accurately predict the fertile period in at least 90% of normally cycling women. Finally, since no methodology will be successful if it is used incorrectly, it is essential that ovulation prediction techniques be developed that will minimize inconvenience to the user.
3. REVIEW AND COMMENTS ON MOST COMMON FERTILITY METHODS
3.1 The Rhythm Method (Also Known as the Calendar Method or the Ogino-Knaus Method)
Ogino and Knaus showed that regardless of the length of the individual's cycle, the timing of ovulation is relatively constant with respect to the onset of the next menses, but not necessarily with respect to the previous menses. From these studies, both developed formulas to determine a woman's fertile and infertile days on the basis of her own cyclic variations. This marked the beginning of “rhythm” as a valid contraceptive method.
The greatest problem with calendar rhythm is that few women have regular 28-day menstrual cycles. Therefore, timing an event—ovulation—14 days in advance of another event which does not occur with complete regularity is difficult in theory and often impossible in practice. An exact record of at least 6 menstrual cycles, or preferably 12, is necessary even for initi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for predicting and detecting ovulation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for predicting and detecting ovulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for predicting and detecting ovulation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2930937

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.