Method and apparatus for plasma-chemical production of...

Chemistry of inorganic compounds – Nitrogen or compound thereof – Oxygen containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C204S177000

Reexamination Certificate

active

06296827

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a method for plasma-chemical production of nitrogen monoxide (NO), in particular for medical purposes. It also relates to an apparatus for plasma-chemical production of NO.
Nitrogen monoxide is a biologically important molecule for intracellular and intercellular transmission of impulses and for immunological reactions, which is normally also formed in the human body. The relief of stress in blood vessels is influenced by NO in the same way as the relief of stress in the alveoli or the smooth musculature in the gastric region. Conversely, a lack of NO can lead to the relaxation of the smooth musculature being suppressed, and thus to constrictions occurring. Such a constriction is evident, for example, in the bronchial area in the form of asthma. Many of those symptoms can be overcome, as is known, by inhalation of gas mixtures containing NO, with NO concentrations in the range of 0.5 ppm to 200 ppm.
Until now, such an inhalation gas containing NO has been obtained from gas cylinders, the storage and handling of which in a clinic or some other therapy facility is complex due to the safety measures required. That applies in particular to a mobile apparatus. Furthermore, the quality of the stored gas has to comply with stringent requirements for medical applications. Those requirements further increase the cost for production and storage. Specifically, even a minor impurity in the gas leads to the formation of undesirable, and possibly toxic, byproducts.
International Publication No. WO95/07610 discloses a method for plasma-chemical production of NO, in which NO is produced under the influence of a corona discharge in a process gas containing nitrogen (N
2
) and oxygen (O
2
). The corona discharge is operated continuously. A gas discharge of the described type disadvantageously leads to only a comparatively minor heating of the process gas to a temperature which is on the order of magnitude of 200° C. That comparatively low temperature only allows NO to be produced in a gas mixture with low efficiency. In fact, the NO
2
(which is undesirable for inhalation purposes) is preferentially produced. In order to remove the NO
2
from the inhalation gas, it is necessary to use a costly absorber technique. The disadvantage of an absorber is, in particular, that the absorber material must be replaced or reconditioned frequently.
A further method of that type is disclosed in U.S. Pat. No. 5,396,882. In that case, the plasma is produced through the use of a spark discharge (or else an arc discharge) instead of by the corona discharge. The spark discharge is highly energetic in comparison to a corona discharge and produces a comparatively large amount of gas heating, as a result of which correspondingly efficient NO production is achieved. However, the high thermal load on the electrodes, particularly at the spark contact point, disadvantageously leads to severe electrode erosion, that is to say to progressive decomposition of the electrode material. Due to that electrode erosion, the known method on one hand requires intensive maintenance since the electrodes are highly susceptible to wear. On the other hand, it is necessary to prevent the eroded electrode material, which is finely distributed in the inhalation gas, from reaching a patient's breathing passages. That requires complex cleaning of the inhalation gas.
The prior art also discloses other non-thermal gas discharges, for example dielectric barrier discharges, as other alternatives to a corona discharge or spark discharge. For example, German Patent No. 438309 describes a device for carrying out chemical reactions with the aid of high-voltage currents using outer electrodes which are covered with semiconductors, and a thin wire as an inner electrode that is also referred to as a corona electrode, in the case of which additives to achieve a catalytic effect are also added to the reaction mixture. However, that device is not suitable for producing pure nitrogen monoxide. That is because corona electrodes operate at low current densities and are therefore unsuitable for injecting sufficiently high electrical power levels for NO production, and the addition of a catalyst to the reaction gas mixture must, in principle, be regarded with apprehension for medical applications.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide an improved method and apparatus for plasma-chemical production of nitrogen monoxide, which overcome the hereinafore-mentioned disadvantages of the heretofore-known methods and apparatuses of this general type and which are particularly effective.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for plasma-chemical production of nitrogen monoxide, which comprises passing a process gas containing nitrogen and oxygen through a discharge zone within which a dielectric barrier gas discharge is created; and using the gas discharge to produce a non-thermal plasma with a gas temperature of at least 400° C. The dielectric barrier gas discharge leads to ionization of gas molecules, and thus to the formation of reactive radicals in the so-called non-thermal plasma. The gas discharge and thus the plasma production take place at the elevated gas temperature of at least 400° C.
The invention is based in this case on the concept that electrode erosion can be effectively avoided if the gas discharge is operated in brief discharge pulses rather than continuously. The dielectric barrier discharge is particularly suitable for this purpose since, in principle, it includes a series of short discharge pulses. A pulsed gas discharge caused by shortening the pulses of the discharge voltage would actually be unsuitable for achieving the object since a technically complex, and thus expensive, voltage supply would be required for that purpose. The voltage supply required to operate a dielectric barrier discharge can, in contrast, be produced easily and cost-effectively.
In this case, the NO production takes place sufficiently efficiently at a comparatively elevated temperature of at least 400° C. to 800° C., while undesirable nitrogen oxides in different oxidation states, for example NO
2
, are produced only to a minor extent at the same time. In accordance with another mode of the invention, experiments have shown that a temperature range from 600° C. to 800° C. in the gas discharge is particularly suitable for plasma-induced NO production. In particular, limiting the temperature to less than 800° C. suppresses the damage to the electrode material (electrode erosion) caused by thermally formed oxygen radicals.
In accordance with a further mode of the invention, in order to effectively remove from the NO-enriched process gas nitrogen oxides in different oxidation states which are still produced in small amounts as a result of the gas discharge, they are catalytically reduced.
In accordance with an added mode of the invention, a gas temperature of up to 600° C. is advantageous during the reaction. Due to the reduction of the nitrogen oxides in different oxidation states, it is possible to limit the use of absorber materials, which need to be replaced frequently, to a minor extent.
In accordance with an additional mode of the invention, a high NO concentration in the process gas is advantageously produced through the use of the gas discharge and, if appropriate, the reduction carried out after it. The concentration is ≧1000 ppm, and thus exceeds the NO concentration of up to 200 ppm required for medical applications, by several times. The highly concentrated NO production is carried out with particularly high efficiency, and is thus energy-saving. In order to achieve an NO concentration in the process gas that is suitable for medical purposes, the process gas, which is highly enriched with NO, is diluted back by using untreated process gas, which thus has a low level of NO. The addition of the untreated process gas also leads to the highly enriched process gas being cooled. T

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for plasma-chemical production of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for plasma-chemical production of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for plasma-chemical production of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2602357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.