Data processing: artificial intelligence – Knowledge processing system
Reexamination Certificate
2007-10-16
2007-10-16
Knight, Anthony (Department: 2121)
Data processing: artificial intelligence
Knowledge processing system
Reexamination Certificate
active
11049146
ABSTRACT:
One embodiment of the present invention provides a system that optimizes support vector machine (SVM) kernel parameters. During operation, the system assigns sets of kernel parameter values to each node in a multiprocessor system. Next, the system performs a cross-validation operation at each node in the multiprocessor system based on a data set. This cross-validation operation computes an error cost value reflecting the number of misclassifications that arise while classifying the data set using the assigned set of kernel parameter values. The system then communicates the computed error cost values between nodes in the multiprocessor system, and eliminates nodes with relatively high error cost values. Next, the system performs a cross-over operation in which kernel parameter values are exchanged between remaining nodes to produce new sets of kernel parameter values. This process is repeated until a global winning set of kernel parameter values emerges.
REFERENCES:
patent: 6714925 (2004-03-01), Barnhill et al.
patent: 6760715 (2004-07-01), Barnhill et al.
patent: 6789069 (2004-09-01), Barnhill et al.
patent: 6882990 (2005-04-01), Barnhill et al.
patent: 7003403 (2006-02-01), Dougherty et al.
patent: 7117185 (2006-10-01), Aliferis et al.
patent: 2003/0175753 (2003-09-01), Shaughnessy et al.
patent: 2003/0232364 (2003-12-01), Shaughnessy et al.
patent: 2004/0009523 (2004-01-01), Shaughnessy et al.
patent: 2005/0049985 (2005-03-01), Mangasarian et al.
patent: 2005/0049990 (2005-03-01), Milenova et al.
patent: 2005/0112630 (2005-05-01), Shaughnessy et al.
patent: 2005/0228783 (2005-10-01), Shanahan et al.
patent: 2005/0240544 (2005-10-01), Kil et al.
A preliminary study of airport freight traffic forecasting based on least squares support vector machine Zhen-Rui Peng; Pu Gao; Jian-Jun Meng; Wen-Zhe Qi; Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on vol. 6, Aug. 18-21, 2005 pp. 3680-3685 vol. 6 Digital Object Identifier 10.1009/ICMLC.2005.15275.
Adapting multiple kernel parameters for support vector machines using genetic algorithms Rojas, S.A.; Fernandez-Reyes, D.; Evolutionary Computation, 2005. The 2005 IEEE Congress on vol. 1, Sep. 2-5, 2005 pp. 626-631 vol. 1 Digital Object Identifier 10.1109/CEC.2005.1554741.
A kernal logit approach for face and non-face classification Hasegawa, O.; Kurita, T.; Applications of Computer Vision, 2002. (WACV 2002). Proceedings. Sixth IEEE Workshop on Dec. 3-4, 2002 pp. 100-104 Digital Object Identifier 10.1109/AVC.2002.1182165.
Face and non-face classification by multinomial logit model and kernel feature compound vectors Hasegawa, S.; Kurita, T.I.; Neural Information Processing, 2002, ICONIP '02. Proceedings of the 9th International Conference on vol. 2, Nov. 18-22, 2002 pp. 996-1000 vol. 2 Digital Object Identifier 10.1109/ICONIP.2002.1198210.
Information criteria for suppoort vector machines Kobayashi, K.; Komaki, F.; Neural Networks, IEEE Transactions on □□vol. 17, Issue 3, May 2006 pp. 571-577 Digital Object Identifier 10.1109/TNN.2006.873276.
Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization Sheng Chen; Xia Hong; Harris, C.J.; Systems, Man and Cybernetics, Part B, IEEE Trasnactions on vol. 34, Issue 4, Aug. 2004 pp. 1708-1717 Digital Object Identifier 10.1109/TSMCB.2004.828199.
Margin-like quantities and generalized approximate cross validation for support vector machines Wahba, G.; Yi Lin; Hao Zhang; Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop Aug. 23-25, 1999 pp. 12-20 Digital Object Identifier 10.1109/NNSP.1999.788118.
Support Vector Machines and Other Pattern Recognition Approaches to the Diagnosis of Cerebral Palsy Gait Kamruzzaman, J.; Begg, R. R.; Biomedical Engineering, IEEE Transactions on vol. 53, Issue 12, Part 1, Dec. 2006 pp 2479-2490 Digital Object Identifier 10.1109/TBME.2006.883697.
COMPARE: Classification of Morphological Patterns Using Adaptive Regional Elements Fan, Y.; Shen, D.; Gur, R. C.; Gur, R. E.; Davatzikos, C.; Medical Imaging, IEEE Transactions on vol. 26, Issue 1, Jan. 2007 pp. 93-105 Digital Object Identifier 10.1109/TMI.2006.886812.
Optimizing Support Vector regression hyperparameters based on cross-validation Ito, K.; Nakano, R.; Neural Networks, 2003. Proceedings of the International Joint Conference on vol. 3, Jul. 20-24, 2003 pp. 2077-2082 vol. 3 Digital Object Identifier 10.1109/IJCNN.2003.1223728.
Bayesian Gaussian Process Classification with EM-EP Algorithm Hyun-Chul Kim; Ghahramani, Z.; Pattern Analysis and Machine Intelligence, IEEE Transactions on vol. 28, Issue 12, Dec. 2006 pp. 1948-1959 Digital Object Identifier 10.1109/TPAMI.2006.238.
Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs Cawley, G.C.; Neural Networks, 2006 IJCNN '06. International Joint Conference on Jul. 16-21, 2006 pp. 1661-1668.
SVM Models in the Diagnosis of Balance Impairments Begg, R.; Lai, D.; Taylor, S.; Palaniswami, M.; Intelligent Sensing and Information Processing, 2005. ICISIP 2005. Third International Conference on Dec. 14-17, 2005 pp. 248-253.
A novel approach to intrusion detection based on SVD and SVM Xin min Tao; Fu rong Liu; Ting xian Zhou; Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE vol. 3, Nov. 2-6, 2004 pp. 2028-2033 vol. 3 Digital Object Identifier 10.1109/IECON.2004.1432108.
A similarity learning approach to content-based image retrieval: application to digital mammography El-Naqa, I.; Yongyi Yang; Galatsanos, N.P.; Nishikawa, R.M.; Wernick, M.N.; Medical Imaging, IEEE Transactions on vol. 23, Issue 10, Oct. 2004 pp. 1233-1244 Digital Object Identifier 10.1109/TMI.2004.834601.
Support vector machines for automated gait classification Begg, R.K.; Palaniswami, M.; Owen, B.; Biomedical Engineering, IEEE Transactions on vol. 52, Issue 5, May 2005 pp. 828-838 Digital Object Identifier 10.1109/TBME.2005.845241.
Gene Selection for Cancer Classification using Wilcoxon Rank Sum Test and Support Vector Machine Chen Liao; Shutao Li; Zhiyuan Luo; Computational Intelligence and Security, 2006 International Conference on vol. 1, Nov. 2006 pp. 368-373 Digital Object Identifier 10.1109/ICCIAS.2006.294156.
Stepwise Feature Selection by Cross Validation for EEG-based Brain Computer Interface Tanaka, K.; Kurita, T.; Meyer, F.; Berthouze, L.; Kawabe, T.; Neural Networks, 2006. IJCNN '06. International Joint Conference on Jul. 16-21, 2006 pp. 4672-4677.
Yet faster method to optimize SVR hyperparameters based on minimizing cross-validation error Kobayashi, K.; Kitakoshi, D.; Nakano, R.; Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint Conference on vol. 2, Jul. 31-Aug. 4, 2005 pp. 871-876 vol. 2.
A New Methodology Based on q-Entropy for Breast Lesion Classification in 3-D Ultrasound ImagesRodrigues, P.S.; Giraldi, G.A.; Provenzano, M.; Faria, M.D.; Ruey-Feng Chang; Suri, J.S.; Engineering in Medicine and Biology Society, 2006. EMBS '06 28th Annual International Conference of the IEEE Aug. 2006 pp. 1048-1051.
Kernelized based functions with Minkovsky's norm for SVM regression Ribeiro, B.; Neural Networks, 2002. IJCNN '02. Proceedings of the 2002 International Joint Conference on vol. 3, May 12-17, 2002 pp. 2198-2203 Digital Object Identifier 10.1109/IJCNN.2002.1007482.
An empirical assessment of kernel type performance for least squares support vector machine classifiersBaesens, B.; Viaene, S.; Van Gestel, T.; Suykens, J.A.K.; Dedene, G.; De Moor, B.; Vanthienen, J.; Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 2000. Proceedings. Fourth International Conference on vol. 1.
Feature selection based on genetic algorithms and support vector machines for handwritten similar Chinese characters recognition Jun Feng; Yang Yang; Hong Wang; Xian-Mei Wang; Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on vol. 6, Aug. 26-29, 2004 pp. 3600-3605 vol. 6.
On the optimal parameter choice for
Gross Kenny C.
Thampy Sajjit
Urmanov Aleksey M.
Holmes Michael B.
Knight Anthony
Park Vaughan & Fleming LLP
LandOfFree
Method and apparatus for optimizing support vector machine... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for optimizing support vector machine..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for optimizing support vector machine... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3900099