Electrical computers and digital processing systems: multicomput – Computer-to-computer protocol implementing – Computer-to-computer data transfer regulating
Reexamination Certificate
1998-10-28
2001-10-02
Wiley, David (Department: 2155)
Electrical computers and digital processing systems: multicomput
Computer-to-computer protocol implementing
Computer-to-computer data transfer regulating
Reexamination Certificate
active
06298385
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to the transmission of multimedia files over a data network, and more specifically to optimizing the transmission of multimedia files in order to provide real-time playback.
BACKGROUND OF THE INVENTION
As personal computers have become more sophisticated, the functions they perform have become more varied. Software now exists which allows computer users to view video clips or listen to sound recordings. Before the multimedia information may be played on a computer this information must first be stored in multimedia computer file which is recognized by the software. Some examples of formats for multimedia files are moving pictures expert group (MPEG) for video encoding and decoding, and musical digital interface (MIDI) for encoding and decoding audio data. These multimedia files are uploadable to a computer, and once loaded, are playable by the software resident on the machine.
Frequently, these multimedia files require a significant amount of memory, which may make them cumbersome for transmitting over data networks. One solution has been to use compression software for the transmission of these files. Prior to transmission, the file is converted to a compressed format. After the files is transmitted, the receiving computer decompresses the information and the file is ready to be played.
A desirable feature when downloading multimedia files may be to either view or listen to the information in real-time. Difficulties may be encountered when trying to perform this multimedia streaming function due to the quality of the connection established between apparatus transmitting the multimedia file and the apparatus which receives and plays it. As is well known, there are a variety of ways to access information through the Internet. Connection possibilities may range from a 14.4 k baud modem connection over a phone line with an Internet service provider (ISP), to a local area network (LAN) with an direct high-speed connection connection to the worldwide web. When making a direct comparison of the two examples recited, the LAN connection to the worldwide web has greater capacity to receive and transmit information.
The type of connection established for playing multimedia files has an effect on the quality of the presentation. If there are too many frames per second being transmitted for a particular type of connection, a certain amount of the data may be lost during transmission which affects the continuity as well as the resolution of the presentation. In situations where the data content of the multimedia files is too great for the type of connection established, it may not be feasible or possible to upgrade the connection.
SUMMARY OF THE INVENTION
Accordingly, a primary objective of the invention is to provide an apparatus and method providing adaptable multimedia streaming over a data network.
In addressing this objective the present inventors have recognized that although many compression schemes currently exist or multimedia streaming over a data network, none of these system provides the adaptability to allow a system user to select a particular transmission speed for the uploading of a multimedia file. Further, it has been recognized a number of factors, such as network congestion, may affect the quality of the transmission at different times.
The invention described herein is an adaptable communications system for streaming multimedia files and allowing their playback in real-time. The communications system may be incorporated into a network server which is part of a data network such as the worldwide web. The system user may access information on the server through a connection established on a network node. Through the connection established to the data network, the system user may download multimedia files which are stored on the network server. Technology currently exists for playing of some multimedia files during download. This is better known as multimedia streaming. One problem which may be encountered during streaming is that the configuration of the multimedia file may not be compatible with the connection established by the system user. If this connection is not compatible with the file format, the real-time playing of the file may lack a good quality continuity or resolution.
The network server may include a number of components, including a network interface, which provides for the two-way transmission of information between the network server and the data network. Connected to the network interface is a processor. This processor coordinates all internal functions for the network server. Also included in the network server is an interface monitor which monitors the transmission of information from the network server. A file compression module provides for the compression of files which are downloaded from the data network. A memory is provided which, under direction of the processor, is used to store the compressed files.
In one aspect of the invention, the network server first downloads multimedia files from a remote source. According to this process, these files may be downloaded from system user with network access, another network server, or any other device which provides this functionality that is connected to the data network. As the multimedia files are downloaded from a remote source, the systems incorporated in the network server perform two functions. The first function is to create multiple copies of the multimedia file in a variety of different formats. These different formats facilitate the transmission of the multimedia files to remote system users through a variety of different data network connections. For example, multimedia files may be generated for transmission especially through a 14.4 k baud modem connection, a 28.8 k baud modem connection, high-bandwidth line, such as an ADSL lines, as well as through a backbone connection. The creation of files in this manner takes into account the resolution and continuity which can be maintained during transmission over these connections.
Each multimedia file generated may include reference markers positioned at predetermined points in time during the playing of the multimedia file. For example, a reference mark may be placed at every minute mark in each file. The only requirement is that each multimedia file generated in the different formats has the reference markers placed at the same point along the time line. The second function which may be carried out by the network server with respect to the multimedia file is to compress each file and store it in memory. Upon storage, each file may be marked according to the criteria from which it was created.
The compressed files in the memory of the network server may be accessible by a system user through the data network. The different selections for multimedia files may be presented on a web page or other similar means. Upon accessing the network server and viewing the options, the system user may make a selection of both the multimedia file to be played as well as the connection speed through which it will be played. Upon receiving these instructions, the processor retrieves the appropriate file from the memory and begins to transmit the compressed filed over the data network. The system user may then play the file as it is downloaded.
As the selected multimedia file is being transmitted from the network server, the network interface monitors the streaming of the data. The transmission speed is directly related to the quality of the connection established by the system user. If the actual transmission speed does not match the transmission speed chosen by the system user, the processor for the network server uses this information to select a file from memory which better operates at the desired speed. In order to provide a seamless presentation, the processor, while outputting the original multimedia files, searches for the next reference mark. When the reference point is located, the processor then locates that same reference mark in the replacement file. When the playing of the multimedia files reaches the id
Lund Arnold M.
Sparks Randall B.
Turner C. Reid
Weich Craig I.
Marsh & Fischmann & Breyfogle LLP
Qwest Communications Int'l., Inc.
Wiley David
LandOfFree
Method and apparatus for optimizing playback of media files... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for optimizing playback of media files..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for optimizing playback of media files... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2583177