Method and apparatus for networked wheel alignment...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle diagnosis or maintenance indication

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S029000, C701S036000, C280S086750

Reexamination Certificate

active

06442460

ABSTRACT:

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
BACKGROUND OF THE INVENTION
The present invention relates to automotive service equipment, and more particularly to computerized vehicle wheel alignment systems configured with software applications to exchange information with, and utilize software components stored on, remote computers in communication with the computerized vehicle wheel alignment systems via a computer network.
It is desirable that a computer associated with an automotive diagnostic or service system such as a vehicle wheel alignment system include an operating system which is fully compatible with local and global computer networks, such as the Internet, to exchange information with remote computers and databases. Examples of such currently available 32-bit operating systems include the Linux family of products and Microsoft Windows™ OS family of products. Such operating system are capable of running Internet browser software such as Microsoft's Internet Explorer or Netscape's Communicator, and may include the Windows™ OS family of products (such as Windows 2000, Windows CE/PocketPC, Windows ME, Windows XP) and Palm Computing's Palm-OS products. Future operating systems utilizing a 64-bit, 128-bit, or 2
n
-bit bases are anticipated as suitable logical extensions of current operating systems as computer hardware technology improves. Additional computing products on which vehicle wheel alignment systems having Internet access may be implemented include tablet-type computers, wearable computers, and pocket-type computers, both of which would be form factors highly suited for use in an automotive repair shop environment.
Computers included in traditional vehicle wheel alignment systems may provide limited access to a network of computers (e.g., LAN) and to the Internet, but generally do not integrate the Internet into associated automotive service, maintenance, repair or inspection software, such as wheel alignment applications. Instead, the computer operates as would any other PC, configured to browse the Internet without fully integrating the Internet into the software applications to utilize the availability of remote access and information exchange.
Conventional distributed application logic utilizes a distributed software object module system such as Microsoft's Distributed Component Object Model (DCOM). The problem with DCOM and other similar systems is that they don't scale to the Internet. Their reliance on tightly coupling the consumer of a service (i.e. software module) to the service itself implies a homogeneous infrastructure, and often means that such systems are very sensitive. If the implementation of the service (i.e. software module) is changed at either side (i.e., by the client or the remote host), the other side may become inoperative.
An example of such a system and method for distributed computer automotive service equipment is described in International Application No. WO 99/23783 to Snap-on Technologies, Inc. wherein computerized automotive service equipment is adapted to access one or more remotely located computer systems to retrieve or exchange the data and/or software necessary to analyze and diagnose a vehicle undergoing service using DCOM and ActiveX™ technology. For example, in the WO 99/23783 application, raw data from vehicle wheel alignment sensors mounted on a vehicle wheel is received on a local computer, and then transmitted to a remote system over a network wherein the raw data is processed and vehicle wheel alignment angles returned over the network to the local computer for display to a technician. Additionally disclosed is the transfer and exchange of vehicle OEM specifications from a remote system over the network to the local computers. However, the system disclosed in the WO 99/23783 application is not robust and adaptable to changes. For example, using the DCOM technologies results in a tightly coupled system wherein changes to the software application at either end of a communications link, i.e. at the automotive service equipment or at the remote system, can result in an inability for the components to communicate.
Using DCOM technologies means it is very difficult to guarantee a single, unified infrastructure. There is no guarantee that the service (i.e. software module) which the wheel alignment system needs to communicate with at the remote system will have the proper infrastructure, i.e. it might have been modified for use with a different operating system, object model, or updated with a new programming language, resulting in an incompatibility between the wheel alignment system and the remote system.
Service-orientated systems, such as those utilizing ONC RPC, DCE, COM, COBRA, RMI, and JINI™ protocols, generally require special protocols for communications. For example, a COM client must use the COM protocols to communication with a COM service. A JINI client must use the JINI protocols to communicate with a JINI service. Such special communications protocols are not common on the Internet, and firewalls routinely block the communication.
U.S. Pat. No. 5,657,233 to Cherrington et al. discloses a closed system for an integrated, highly automated, vehicle analysis system employing at least one technician terminal for displaying a plurality of inspection screens and for entering inspection results from which a report is generated. The '233 Cherrington et al. technician terminal may be coupled to a point-of-sale terminal through a network, which is used to generate a cost estimate report in response to an inspection report generated by the technician terminal. The '233 Cherrington et al. system includes a plurality of electronic databases for storing vehicle specifications, customer records, and a parts catalog database. Additionally disclosed in the '233 Cherrington et al. system is the interconnection between a plurality of point-of-sale terminals and a central server for the purpose of storing customer records and vehicle inspection reports in a central location. The '233 Cherrington et al. system is a completely closed system, in that it requires specific software applications to be in place on each element of the system, and changes to one element will render it incompatible with the remaining elements.
Emerging Internet technology, such as Microsoft “.NET” technology and also Sun™ Open Net Environment (Sun ONE) Software Architecture, shifts the focus from individual web sites and specific remote computers storing information to new constellations of computers, devices, and services which work together. Using Microsoft “.NET” and Sun ONE technology, hereinafter collectively referred to as “dot”-NET or NET, computers, devices, and services are able to collaborate directly with each other, enabling access to a user's data and compatible applications anywhere and from a wide variety of compatible device. Specifically, “dot”-NET technology joins the tightly coupled, highly productive aspects of traditional n-tier computing networks and systems, such as is seen in the WO 99/23783 application and the '233 Cherrington et al. patent discussed above, with the loosely coupled, message-orientated concepts of the Web to produce a style of computing known as Web Services Software Components.
A Web Service is a software application that exposes its features programmatically over the Internet or other computer network using a standard Internet communications protocol such as Hypertext Transfer Protocol (HTTP) or Extensible Markup Language (XML). Web Services Software Components can be utilized in software applications by calling Web application program interfaces (API's) just as they would call local services, with the difference being that the call is now routed across the Internet or other network to a service residing on a remote system.
In contrast to traditional tightly coupled systems utilizing DCOM and related technologies, Web Services Software Components employing “dot”-NET technology are loosely coupled. This means that cha

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for networked wheel alignment... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for networked wheel alignment..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for networked wheel alignment... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2913116

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.