Multiplex communications – Special services – Conferencing
Reexamination Certificate
2000-06-19
2004-05-18
Marcelo, Melvin (Department: 2663)
Multiplex communications
Special services
Conferencing
C370S412000, C345S215000
Reexamination Certificate
active
06738357
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to the field of digital communications systems, and more particularly to systems transporting multiple media (multimedia) and/or communicating such multimedia through a plurality of connections to multiple callers.
BACKGROUND OF THE INVENTION
In the prior art, multimedia communications, such as videoconferencing systems for providing two way video and audio, are well known. Given sufficient bandwidth and dedicated independent channels, (e.g. 6 Mhz for an analog video channel, 3 Khz for an audio link over a standard analog telephone line, etc), videoconferencing between two callers can be realized. However, communication channels providing 6 Mhz video bandwidth are not generally or universally available. A major obstacle to wide spread implementation and acceptance of multiple media conferencing systems is the limited bandwidth of the available communication channels. In addition, typical communication channels available on packet switched networks such as AppleTalk, from Apple Computer, California, USA, or Netware from Novell Inc, Oregon, USA, do not provide the continuous real time analog or digital connection of a telephone line or modem. Instead, packet switched networks provide non-real time bursts of data in the form of a switched packet containing a burst of digital data. Thus, in addition to bandwidth limitations, packet switched networks present delay limitations in implementing real time multiple media conferencing systems. The same bandwidth and time delay limitations which apply to all time division multiple access (TDMA) communication systems and similar schemes present obstacles to achieving real time multimedia communications.
Typically, the problem of videoconferencing two callers is approached by compressing the composite video signal so that the resulting transmitted data rate is compatible with the available communication channel, while permitting acceptable video and audio to be received at the other end of the communication channel. However, solutions in the past using lossy compression techniques, have been limited to compromising quality in order to obtain acceptable speed. Recently, non-lossy compression techniques have become available. The problem still remains as to how to match the bandwidth and timing constraints of available digital formats to the available communication channels, both present and future.
SUMMARY OF THE INVENTION
The present invention is embodied in a digital communication system where multiple media data sources are time multiplexed into a packetized data stream. At both the transmit side, and the receive side, audio packets are given priority processing over video pickets, which in turn have priority over text/graphics data packets. Continuous real time audio playback is maintained at the receiver by delaying the playback of received audio in a first in/first out (FIFO) buffer providing a delay at least equal to the predicted average packet delay for the communication system. Optionally, the average system delay is continuously monitored, and the audio and video playback delay time as well as audio and video qualities are adjusted accordingly. In another embodiment of the invention, a conference of three or more callers is created by broadcasting a common packetized data stream to all conference callers. Use of the present invention further permits an all software implementation of a multimedia system.
1. In accordance with a first aspect of the present invention, multiple data sources forming data packets are combined into a prioritized data stream.
The present invention is embodied in a method and apparatus for combining data from a plurality of media sources into a composite data stream capable of supporting simultaneous transmission including multiple video and graphic signals and real time audio. Video, audio and other signals are integrated in a non-standard transmission format determined by a novel streaming algorithm and prioritization scheme designed to provide the best balance between transmission quality and realization of real time rendition of each.
For example, each data type packet at the transmitter is assigned a priority between
0
and
10000
, with
0
being the highest priority and
10000
the lowest. An audio packet is given priority
20
, a video packet is given priority
50
. Screen data packets and file data transfer packets are both given priority
180
.
Before transmission on the communication channel, packets are placed in a queue according to priority order. As new packets are generated, the queue is reorganized so that the new packet is placed into its proper priority order.
At the receiver, each task runs according to its assigned priority. Packets with priorities between
0
and
100
are processed first, to the exclusion of packets with priorities
101
through
10000
. Audio, being the highest priority (
20
), is processed first to the exclusion of all other packets. Within the class of packets with priorities between
101
and
10000
, packets are processed according to relative priority. That is, higher priority tasks do not completely shut out tasks of lower priority. The relationship among priorities is that a priority
200
task runs half as often as a priority
100
task. Conversely, a priority
100
task runs twice as often as priority
200
task. Tasks with priorities between
0
and
100
always run until completion. Thus, video, screen data and file data, processing tasks are completed after audio processing in accordance with the relative priority of the packets.
A multi-tasking executive dynamically reassigns task priorities, to efficiently complete all tasks within the available time, while performing the highest priority tasks first. At any given time, there are different tasks all at different priorities, all yielding to each other. In general, a task yields to a higher priority task, if it is not running an uninterruptable sequence. If the current task completes its cycle, its priority is reassigned to a lower priority. If the priority of two or more tasks is equal, then the multi-tasking executive executes each task in a round robin fashion, performing a portion of each task, until the completion of all tasks with the same priority.
The assignment of packet priorities, and processing according to priority assures that audio will be given precedent over video, while audio and video will be given precedent over both screen data and file transfer data.
As indicated above, continuous real time audio playback is maintained at the receiver by delaying the playback of received audio in a first in/first out (FIFO) buffer having a size at least equal to the predicted average packet delay for the communication system. Optionally, the delay of the audio FIFO may be made variable. A variable delay audio FIFO buffer at the receiver allows the system to shrink or grow the time delay between one machine and the other. The ability to shrink or grow the difference in the between the sender and receiver permits the system of the present invention to compensate for indeterminate system delays. If the changes are slight, the difference in pitch is not noticeable. For greater changes, the technique of audio resampling may be used to increase or decrease the rate of audio playback without changing the pitch of audio content.
Similarly, video playback continuity at the receiver may also be improved by delaying the playback of received video in a first in/first out (FIFO) buffer having a size at least equal to the predicted average packet delay for the communication system. The delay of the video FIFO may be made variable, allowing the system to shrink or grow the time delay between one machine and the other to compensate for indeterminate system delays. Again, if the changes are slight, the change in frame rate is not noticeable. However, video data does not age as quickly as audio data. Therefore a smaller video FIFO can be used. Also, a video image may have short discontinuities without a perceived loss of the video connection. Audio playback, on t
Reed, Jr. Ogden Cartwright
Richter Andreas
BTG International Inc.
Gazdzinski & Associates
Marcelo Melvin
LandOfFree
Method and apparatus for multiple media digital... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for multiple media digital..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for multiple media digital... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3239903