Dynamic information storage or retrieval – Information location or remote operator actuated control – Selective addressing of storage medium
Reexamination Certificate
1995-06-07
2004-05-25
Dinh, Tan (Department: 2653)
Dynamic information storage or retrieval
Information location or remote operator actuated control
Selective addressing of storage medium
C360S078060
Reexamination Certificate
active
06741529
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to data storage systems of the type that include a housing having an opening for receipt of a removable disc cartridge in which an information recording medium is mounted for protection. More particularly, it relates to a system for rapidly encoding and writing information onto optical disks in a high density format, and for reading and decoding the information written thereon.
2. Description of the Related Art: Overview
The demand for mass data storage continues to increase with expanding use of data processing systems and personal computers. Optical data storage systems are becoming an increasingly popular means for meeting this expanding demand. These optical data systems provide large volumes of relatively low-cost storage that may be quickly accessed.
In optical disc systems, coded video signals, audio signals, or other information signals are recorded on a disc in the form of information tracks on one or both planar surfaces of the disc. At the heart of an optical storage system is at least one laser (or other light source). In a first operating mode, the laser generates a high-intensity laser beam that is focused on a small spot on an information track of a rotating storage disc. This high-intensity laser beam raises the temperature of the recording surface of the material above its Curie Point—the point at which the material loses its magnetization and accepts the magnetization of the magnetic field in which the disc is placed. Thus, by controlling or biasing this surrounding magnetic field, and allowing the disc to cool below its Curie Point in a controlled magnetic environment, information may be recorded on the disc in the form of magnetic domains referred to as “pits” on the recording medium.
Subsequently, when the operator desired to reproduce or read the previously recorded information, the laser enters a second operating mode. In this mode, the laser generates a low-intensity laser beam that is again focused on the tracks of the rotating disc. This lower intensity laser beam does not heat the disc above its Curie Point. The laser beam is, however, reflected from the disc surface in a manner indicative of the previously recorded information due to the presence of the previously formed pits, and the previously recorded information may thereby be reproduced. Since the laser may be tightly focused, an information processing system of this type has advantages of high recording density and accurate reproduction of the recorded information.
The components of a typical optical system include a housing with an insertion port through which the user inserts the recording media into the drive. This housing accommodates, among other items, the mechanical and electrical subsystems for loading, reading from, writing to, and unloading an optical disc. The operation of these mechanical and electrical subsystems is typically within the exclusive control of the data processing system to which the drive is connected.
Within the housing of a conventional system that uses disc cartridges, a turntable for rotating a disc thereon is typically mounted on the system baseplate. The turntable may comprise a spindle having a magnet upon which a disc hub is mounted for use. The magnet attracts the disc hub, thereby holding the disc in a desired position for rotation.
In optical disc systems, as discussed above, it is necessary to magnetically bias the disc during a writing operation by applying a desired magnetic field to at least the portion of the disc being heated by the laser during the writing (recording or erasing) operation. Thus, it is necessary to mount a magnetic field biasing device where it may be conveniently placed in close proximity to the disc surface when the disc is held in position by the magnet associated with the spindle.
A variety of media or disc types are used in optical data storage systems for storing digital information. For example, standard optical disc systems may use 5¼ inch disks, and these optical disks may or may not be mounted in a protective case or cartridge. If the optical disc is not fixedly mounted in a protective cartridge, an operator manually removes the disc from the protective case. The operator would then manually load the disc onto a loading mechanism, using care to prevent damage to the recording surface.
Alternatively, for purposes of convenience and protection, a disc may be mounted within an enclosure or a cartridge that is itself inserted into the insertion port of the drive and is then conveyed to a predetermined position. These disc cartridges are well known in the computer arts. The disc cartridge comprises a cartridge housing containing a disc upon which data may be recorded.
Cartridge Loading
To protect the disc when the cartridge is external from the drive, the disc cartridge typically includes at least one door or shutter that is normally closed. The cartridge shutter may have one or more locking tabs associated with it. The corresponding disc drive includes a mechanism for opening the door or shutter on the cartridge as the cartridge is pushed into the system. Such a mechanism may comprise a door link that makes contact with a locking tab, thereby unlocking the shutter. As the cartridge is inserted further into the drive, the shutter is opened to partially expose the information recording medium contained therein. This permits a disc hub to be loaded onto a spindle of a motor or other drive mechanism, and permits entry of a read-write head and a bias magnetic into the protective cartridge. The disc, when rotated by the drive mechanism, permits the read-write head to access all portions of the disc media.
To conserve space in optical storage systems, it is desirable to minimize the size required by the apparatus that loads a disc onto and unloads the disc from a spindle. Conventional loading and unloading devices vary depending upon the type of disc being used. A conventional disc loading and unloading system that uses disc cartridges is typically capable of automatically transporting a disc cartridge from a receiving port onto the spindle. When the disc is no longer required, a conventional disc loading and unloading system automatically unloads the disc from the spindle. A loading device for performing this loading and unloading of the disc is generally constructed so that during disc loading (i.e., when the disc is moved from an ejected position into the player and onto the spindle), the disc is moved horizontally, parallel to the baseplate and turntable, towards the turntable. When the disc has been positioned above the turntable, the disc is lowered vertically, perpendicular to the face of the turntable, onto the spindle. Once on the turntable, a spindle magnet attracts the disc hub fixed to the center of the media, thereby clamping the disc in a rotatable condition for read-write operations.
When an operator is finished using the disc, the operator initiates an eject operation. The most common solution for ejecting a cartridge and disc from a spindle is the technique used in most Japanese drives. In this type of disc unloading apparatus, a cartridge “box” has four pins at its sides, and the pins ride in tracks in an adjacent sheet metal guide. During disc ejection, the cartridge box lifts the disc straight up and off the spindle. The apparatus then moves the disc horizontally, parallel to the baseplate and turntable, towards the disc receiving port in the front of the player. When the disc is thus lifted from the spindle during the unloading operation, it is necessary to generate sufficient upward force on the cartridge to overcome the magnetic clamping force holding the disc hub on the spindle magnet. The peak upward force required to overcome the magnetic clamping force may be produced by the mechanical operation of an ejection lever or by the activation of an electric ejection system.
In conventional electric ejection systems, wherein the disc cartridge unloading apparatus vertically lifts the disc cartridge to break the magnetic forc
Dinh Tan
Discovision Associates
Do Caroline
Masaki Keiji
Wong Steve A.
LandOfFree
Method and apparatus for moving carriage assembly from... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for moving carriage assembly from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for moving carriage assembly from... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3237400