Method and apparatus for monitoring fetal cerebral...

Surgery – Diagnostic testing – Measuring or detecting nonradioactive constituent of body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06381480

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention generally pertains to a method and apparatus for monitoring fetal cerebral oxygenation during childbirth. More particularly, the present invention relates to a method and apparatus for monitoring fetal cerebral oxygenation using near-infrared spectroscopy.
As is well known, oxygen is transferred from the maternal blood to the fetal circulation through the placenta. During uterine contractions, increased pressure on the placenta impedes blood flow and interrupts the supply of oxygen to the fetus to a degree proportional to the duration, intensity, and frequency of the contractions. The fetus has a number of protective mechanisms including a special form of hemoglobin, with its dissociation curve shifted to the left, which binds more oxygen at lower partial pressures. Also, when the oxygen supply is cut off, the fetal metabolism continues to produce chemical energy (ATP) by anaerobically converting glucose to lactate—“glycolysis.” (Red cells themselves do not use oxygen but get all their energy this way.) Reestablishment of blood flow provides the oxygen to metabolize the excess lactate and return cells to normal metabolism.
Despite these protective measures, if the fetus is compromised by a sustained interruption of the blood supply or when the normal placental vasculature is impaired, profound fetal hypoxia can result in permanent brain damage or death. If fetal hypoxia is detected early enough, an operative delivery can be initiated to prevent or reduce brain damage. There are presently no good ways to monitor fetal oxygenation distress.
The fetal heart rate slows in response to low oxygenation (opposite to adults) and may be monitored either externally using Doppler ultrasound and other methods, or directly by hooking a small electrode into the fetal scalp. The latter is more reliable and is becoming more commonly used. Late slowing of the heart rate (decelerations) during each uterine contraction are thought to result from uteroplacental insufficiency and reflect inadequate fetal oxygenation. While very sensitive, the technique has such low specificity that it may lead to unjustified operative deliveries.
Because fetal cerebral oxygenation is not now directly measurable, consideration has been given to measuring the fetal scalp oxygenation in the hope it will provide some information—even though its relationship to what is going on in central and cerebral oxygenation remains highly controversial. However, even though some of the fetal scalp is accessible early, the direct measurement of scalp oxygenation has many practical problems.
Blood samples are occasionally taken from the scalp for analysis, but this has the disadvantage of limited availability, prerequisites for use, and invasive nature. Moreover, however accurate, sampling provides only intermittent information about the very dynamically changing condition of the fetus during labor.
Continuous monitoring of blood pH (an indication of oxygenation) in the subcutaneous space of the fetal scalp through a hollow spiral needle has been described but is expensive and not used outside of clinical research centers.
Transcutaneous oxygen tension (tcPO
2
) using a Clark-type electrode is possible but requires a tight, dry seal between the scalp and the surface of the electrode. Other disadvantages include the need to constantly heat the skin under the electrode in order to increase oxygen diffusion through the skin, the slow response time of the electrodes, the dependence on the measurement on skin blood flow, and the inherent long-term drift of the tcPO
2
electrodes.
Recently, in vivo near-infrared spectroscopy (NIRS) has shown considerable promise for noninvasive, direct monitoring of fetal and neonatal cerebral tissue oxygenation. The basis of the methodology is the surprising translucence of the body to near-infrared photons having wavelengths between about 700 and 1100 nm. The light is easily seen transmitted through thin body parts (cheek, ear, fingers, etc.) and a “back-scattered” halo of reflected light can be observed from all, including thick tissues, and invisible near-infrared light is far more easily transmitted. The very long (random and tortuous) paths taken by the photons makes them exceedingly sensitive to the optical properties of tissue and, in particular, the concentration of hemoglobin molecules and the average amount of oxygen they are carrying.
Measuring available oxygen is very useful. At any moment, the body's total supply of oxygen is only about one gram (just enough to last about four minutes), which is bound to the hemoglobin in circulating blood. Obviously, maintenance of the oxygen supply is crucial to avoid irreversible tissue death. The length of time that cells can survive following interruption of oxygen depends on the type of tissue. Brain neurons are unrecoverable after only several minutes.
Measurement of just how much oxygen hemoglobin is carrying is made possible because the infrared (and visible “color”) absorption spectrum of hemoglobin is strongly dependent on its oxygen saturation. Arterial blood leaving the heart gets its bright red color from hemoglobin that is nearly saturated with oxygen absorbed in the lungs. The hemoglobin of venous blood has given up much of its oxygen to tissue metabolism and turned dark and bluish.
The average amount of oxygen carried by hemoglobin molecules is expressed as the percent of “saturation.” Thus, hemoglobin in arterial blood, having just visited the lungs, is nearly 100% saturated. Many of the hemoglobin molecules in the venous blood will have given up this oxygen to the cells of the body and the average saturation may fall to half (50%) or less.
The nomenclature is mixed, but a hemoglobin molecule that has oxygen attached to all four binding sites is called “oxy-hemoglobin.” Hemoglobin without any oxygen attached is called “deoxy-hemoglobin.” Individual hemoglobin molecules will be in one state or the other, since it is very unlikely that any hemoglobin molecule will have only partial filling of its four oxygen-binding sites.
NIRS technology uses a source of near-infrared light to send photons into the skin over the organ of interest. After being scattered about inside the body, some photons survive to return and exit the skin. A detector at some nearby point measures their flux compared to the injected flux (“reflectance”). Reflectance is defined as the number of returning photons per unit area per photon injected and is essentially an exponentially decreasing function of the effective absorption coefficient &mgr;
eff
=(3&mgr;
a
&mgr;
s
′) and the distance between source and detector.
Both the light source (typically a light emitting diode or tungsten lamp) and the detector (typically a silicon photodiode or photomultiplier) are called “optodes.” By doing this measurement at several wavelengths, one can infer the spectral absorptance, and hence estimate the concentration of hemoglobin (and hence blood) in the organ and its average oxygenation.
The “pulse oximeter” was the first successful device based on measuring infrared spectral reflectance, and is very widely used. It is an extension of the infrared heart rate monitors that can be clipped to the earlobe or finger and detect the change of light absorption as arteries in the light path expand and contract in response to pressure from heart muscle contractions. By detecting the change of absorption at two or more wavelengths, pulse oximeters can measure the average hemoglobin oxygen saturation in the pulsing arteries. By their nature, pulse oximeters are insensitive to the oxygenation of capillary and venous blood—or, for that matter, arterial blood that is remote from the skin surface. Since the small changes in absorption are easily swamped by changes in optode spacing, pulse oximeters are very sensitive to patient motion.
Although manufacturers are attempting to adapt pulse oximeters to measure oxygenation of the fetal brain during birth, they are not well suited for this special application. Even if they can be made to re

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for monitoring fetal cerebral... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for monitoring fetal cerebral..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for monitoring fetal cerebral... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2837304

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.