Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical therapeutic systems
Reexamination Certificate
2001-07-16
2003-12-23
Layno, Carl (Department: 3762)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Electrical therapeutic systems
C607S017000
Reexamination Certificate
active
06668194
ABSTRACT:
FIELD OF THE INVENTION
The present invention pertains to cardiac pacing systems that pace and sense in at least a first site in the heart and sense conducted electrical signals at a second site in the heart and measuring and accumulating electrical conduction times between the first and second sites to derive trend data indicative of the state of heart failure.
BACKGROUND OF THE INVENTION
CHF is defined generally as the inability of the heart to deliver enough blood, i.e., to supply sufficient cardiac output, to the peripheral tissues to meet metabolic demands. Frequently CHF is manifested by left ventricular dysfunction (LVD), but it can have a variety of sources. For example, CHF patients may have any one of several different conduction defects. The natural electrical activation system through the heart involves sequential events starting with the sino-atrial (SA) node, and continuing through the atrial conduction pathways of Bachmann's bundle and internodal tracts at the atrial level, followed by the atrio-ventricular (AV) node, Common Bundle of His, right and left bundle branches, and final distribution to the distal myocardial terminals via the Purkinje fiber network. A common type of intra-atrial conduction defect is known as intra-atrial block (IAB), a condition where the atrial activation is delayed in getting from the right atrium (RA) to the left atrium (LA). In left bundle branch block (LBBB) and right bundle branch block (RBBB), the activation signals are not conducted in a normal fashion along the right or left bundle branches respectively. Thus, in a patient with bundle branch block, the activation of the right ventricle (RV) and the left ventricle (LV) is slowed, and the QRS is seen to widen due to the increased time for the activation to traverse the conduction path. For example, in a patient with LBBB, the delay in the excitation from the RV to the LV can be as high as 120 to 150 ms.
Thus, cardiac depolarizations that naturally occur in one upper or lower heart chamber are not conducted in a timely fashion either within the heart chamber or to the other upper or lower heart chamber diseased hearts exhibiting LVD and CHF. In such cases, the right and left heart chambers do not contract in optimum synchrony with each other, and cardiac output suffers due to the conduction defects. In addition, spontaneous depolarizations of the LA or LV occur at ectopic foci in these left heart chambers, and the natural activation sequence is grossly disturbed. In such cases, cardiac output deteriorates because the contractions of the right and left heart chambers are not synchronized sufficiently to eject blood therefrom. Furthermore, significant conduction disturbances between the RA and LA can result in left atrial flutter or fibrillation.
More particularly, as described in commonly assigned U.S. Pat. No. 6,129,744, LVD and other forms of heart failure are manifested by reduced ejection fraction from the LV thereby reducing stroke volume and promoting pulmonary edema limiting the patient's ability to exercise. Patients suffering from LVD are also known to have elevated levels of catecholamines at rest because the body is attempting to increase cardiac output that induce a higher resting heart rate. In addition, the QT interval for such a patient is affected by the catecholamine level and thus has a changed pattern during exercise as well. These patients have a decreased QT response, or smaller change in QT, during exercise, such that the QT interval shortening during exercise is smaller than that found normally. Although QT interval is influenced independently by heart rate alone, as well as by exercise and catecholemines, it is not known to what extent each of these factors or both are responsible for the changed QT response to exercise in LVD patients. However, it is known that patients suffering LVD clearly have a different pattern of QT interval shortening during exercise. Moreover, the changed conductive patterns or a heart in heart failure are manifested by other changes in the PQRST waveforms, particularly an abnormally wide or long duration of the ventricular depolarization signal, or QRS.
It has been proposed that various conduction disturbances involving both bradycardia and tachycardia of a heart chamber could benefit from pacing pulses applied at multiple pace/sense electrode sites positioned in or about a single heart chamber or in the right and left heart chambers in synchrony with a depolarization which has been sensed at least one of the pace/sense electrode sites. It is believed that atrial and left ventricular cardiac output can be significantly improved when left and right chamber synchrony is restored, particularly in patients suffering from dilated cardiomyopathy, LVD and CHF.
A number of proposals have been advanced for providing pacing therapies to alleviate heart failure conditions and restore synchronous depolarization and contraction of a single heart chamber or right and left, upper and lower, heart chambers as described in detail in the above referenced '744 patent and in commonly assigned U.S. Pat. Nos. 5,403,356, 5,797,970 and 5,902,324 and in U.S. Pat. Nos. 5,720,768 and 5,792,203. The proposals appearing in U.S. Pat. Nos. 3,937,226, 4,088,140, 4,548,203, 4,458,677, 4,332,259 are summarized in U.S. Pat. Nos. 4,928,688 and 5,674,259. The advantages of providing sensing at pace/sense electrodes located in both the right and left heart chambers is addressed in the '688 and '259 patents, as well as in U.S. Pat. Nos. 4,354,497, 5,174,289, 5,267,560, 5,514,161, and 5,584,867.
The medical literature also discloses a number of approaches of providing bi-atrial and/or bi-ventricular pacing as set forth in: Daubert et al., “Permanent Dual Atrium Pacing in Major Intra-atrial Conduction Blocks: A Four Years Experience”,
PACE
(Vol. 16, Part II, NASPE Abstract 141, p.885, April 1993); Daubert et al., “Permanent Left Ventricular Pacing With Transvenous Leads Inserted Into The Coronary Veins”,
PACE
(Vol. 21, Part II, pp. 239-245, January 1998); Cazeau et al., “Four Chamber Pacing in Dilated Cardiomyopathy”,
PACE
(Vol. 17, Part II, pp. 1974-1979, November 1994); and Daubert et al., “Renewal of Permanent Left Atrial Pacing via the Coronary Sinus”,
PACE
(Vol. 15, Part II, NASPE Abstract 255, p. 572, April 1992).
In the above-referenced '324 patent, an AV synchronous pacing system is disclosed providing three or four heart chamber pacing through pace/sense electrodes located in or adjacent one or both of the RA and LA and in or adjacent to the RV and LV. During an AV delay and during a V-A escape interval, a non-refractory ventricular sense event detected at either the RV or LV pace/sense electrodes starts a conduction time window (CDW) timer. A ventricular pace pulse is delivered to the other of the LV or RV pace/sense electrodes at the time-out of the CDW if a ventricular sense event is not detected at that site while the CDW times out.
The above-referenced '744 patent discloses a rate responsive, bi-ventricular pacemaker having one or more sensors for sensing a parameter indicative of the physiologic need for cardiac output, and for pacing the patient on demand between a lower rate limit (LRL) and an upper rate limit (URL). In a specific embodiment, the pacemaker determines QT interval, and stores data representative of changes in QT interval as a function of paced heart rate and/or the patient's spontaneous lower rate when at rest. Variations in the correlation of QT interval and heart rate, and/or variations in patient lower rate at rest are processed to provide a time trend, or profile, from which a determination is made as to whether or not LVD is indicated. In alternate embodiments, other data derived from cardiac signals is processed and stored, e.g., QRS width, T-wave amplitude, etc. A change in the variation of T-wave amplitude with respect to exercise, and consequent heart rate, can be easily measured and tracked in a QT rate responsive pacemaker, or any pacemaker adapted to sense and recover the T-waves.
Layno Carl
Medtronic Inc.
Soldner Michael C.
Wolde-Michael Girma
LandOfFree
Method and apparatus for monitoring conduction times in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for monitoring conduction times in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for monitoring conduction times in a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3165109