Method and apparatus for measuring the rollover resistance...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Vehicle diagnosis or maintenance indication

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S065010

Reexamination Certificate

active

06327526

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a method and an apparatus for measuring the rollover resistance and compliance characteristics of a vehicle and more particularly, to a method and an apparatus which is adapted to analyze the rollover resistance and compliance characteristics of a vehicle and which provides a full and accurate replication of the dynamic forces that are imparted upon a vehicle during steady-state and transient inertial events.
BACKGROUND OF THE INVENTION
It is desirable to measure and analyze a vehicle's weight transfer and compliance characteristics during certain inertial events in order to gain a better understanding of the vehicle's resistance to rollover and structural compliance attributes. For example and without limitation, understanding a vehicle's resistance to rollover during various inertial events allows the safety devices within a vehicle (e.g., seat belt pretensioners, airbags) to be deployed in a timely and proper fashion to protect the occupants of the vehicle in situations where a rollover may be imminent. Furthermore, this information can be used to modify the vehicle to increase its resistance to rollover in certain situations and/or to meet certain structural compliance requirements or desires.
Efforts have been made to determine and/or analyze a vehicle's resistance to rollover in certain situations and to measure the vehicle's compliance attributes in those situations. Prior efforts include disposing various sensors on a vehicle and causing the vehicle to perform various maneuvers on a test track or in other testing environments. Readings are taken from the sensors which provide information regarding the various forces on the vehicle, the vehicle's speed, turning radius, and other vehicle attributes. This information can then be used to analyze the vehicle's resistance to rollover (e.g., by examining the data received just prior to the vehicle tipping or “rolling over”) and/or compliance attributes (e.g., by examining the displacement, stress, strain or bending experienced by portions of the vehicle). While these prior methods provide information relevant to a vehicle's rollover resistance and structural compliance characteristics, they suffer from some drawbacks.
For example and without limitation, because the sensor readings are taken in real time during testing maneuvers, it is difficult, if not impossible, to determine all of the forces acting on the vehicle and/or the vehicle's structural compliance attributes at any one instance in time and/or at a particular inertial state. Particularly, an excessive amount of sensors would have to be deployed on the vehicle and simultaneously monitored. Such an excessive amount of sensors would be difficult to accurately and simultaneously monitor and could, themselves, alter the performance of the vehicle. Hence, prior methods typically use fewer sensors which do not provide sufficient information to fully quantify a vehicle's rollover resistance and structural compliance attributes during certain inertial events.
Applicant's invention addresses these drawbacks and provides a new and improved method and an apparatus for measuring the rollover resistance and dynamic compliance characteristics of a vehicle.
SUMMARY OF THE INVENTION
It is a first object of the invention to provide a method and an apparatus for measuring the rollover resistance and dynamic compliance characteristics of a vehicle which overcomes at least some of the previously delineated drawbacks of the prior systems, devices and/or methods.
It is a second object of the invention to provide a method and an apparatus for accurately measuring the rollover resistance of a vehicle at certain inertial conditions.
It is a third object of the invention to provide a method and an apparatus which allows for a full and accurate replication of the dynamic forces that are imparted upon a vehicle during steady-state and transient events.
It is a fourth object of the invention to provide a method and an apparatus for accurately measuring a vehicle's structural compliance attributes.
According to one aspect of the present invention an apparatus is provided for measuring and analyzing attributes of a vehicle during a certain inertial event. The vehicle includes a plurality of tires and a suspension assembly. The apparatus comprises a test platform on which the vehicle is placed and which is selectively and rotatably positionable in an angular position based upon said inertial event; a plurality of load sensors which are each disposed under a unique one of the plurality of tires and which are adapted to provide data regarding the loads provided by the plurality of tires; a plurality of actuators which are attached to the suspension assembly and which are adapted to selectively hold the suspension assembly in a certain position; and a compensation assembly which is attached to the test platform and to the vehicle, the compensation assembly being effective to selectively provide a force to the vehicle that compensates for a loss of gravitational force that is experienced by the vehicle when the test platform resides in the angular position, thereby cooperating with the test platform to accurately replicate forces that are imparted upon the vehicle during the inertial event and allowing the attributes to be analyzed.
According to a second aspect of the present invention a method is provided for measuring certain attributes of a vehicle during an inertial event, the vehicle having a suspension assembly. The method includes the steps of: causing the vehicle to experience an inertial event; measuring lateral forces on the vehicle when the vehicle experiences the inertial event; monitoring the state of the suspension assembly when the vehicle experiences the inertial event; replicating the state of the suspension assembly by use of a plurality of actuators; placing the vehicle on a test fixture; rotating the test fixture to a certain angular position effective to replicate the measured lateral forces; imparting a vertical force on the vehicle effective to compensate for a loss of gravitational force that is experienced by the vehicle when the test fixture resides in the angular position; and measuring and analyzing the certain attributes of the vehicle.
Further objects, features, and advantages of the invention will become apparent from the following detailed description of the preferred embodiment of the invention and by reference to the following drawings.


REFERENCES:
patent: 3418847 (1968-12-01), Nantz
patent: 3584503 (1971-06-01), Senour
patent: 3638211 (1972-01-01), Sanchez
patent: 3837221 (1974-09-01), Odier
patent: 5032821 (1991-07-01), Domanico et al.
patent: 5136513 (1992-08-01), Sol et al.
patent: 5177998 (1993-01-01), Monk
patent: 5189920 (1993-03-01), Martinez
patent: 5369974 (1994-12-01), Tsymberov
patent: 5583777 (1996-12-01), Power
patent: 5825284 (1998-10-01), Dunwoody et al.
patent: 6002974 (1999-12-01), Schiffman
patent: 6002975 (1999-12-01), Schiffman et al.
patent: 6038495 (2000-03-01), Schiffman

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for measuring the rollover resistance... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for measuring the rollover resistance..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for measuring the rollover resistance... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2563373

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.