Method and apparatus for measuring reporting channel state...

Pulse or digital communications – Systems using alternating or pulsating current – Plural channels for transmission of a single pulse train

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C375S144000, C375S260000, C375S299000, C375S347000, C370S208000, C370S210000

Reexamination Certificate

active

06473467

ABSTRACT:

BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention relates to the field of communications. More particularly, the present invention relates to the measurement and report of channel state information in a high efficiency, high performance communications system.
II. Description of the Related Art
A modern day wireless communications system is required to operate over channels that experience fading and multipath. One such communications system is a code division multiple access (CDMA) system that conforms to the “TIA/EIA/IS-95 Mobile Station-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System,” hereinafter referred to as the IS-95 standard. The CDMA system supports voice and data communication between users over a terrestrial link. The use of CDMA techniques in a multiple access communication system is disclosed in U.S. Pat. No. 4,901,307, entitled “SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS,” and U.S. Pat. No. 5,103,459, entitled “SYSTEM AND METHOD FOR GENERATING WAVEFORMS IN A CDMA CELLULAR TELEPHONE SYSTEM,” both assigned to the assignee of the present invention and incorporated herein by reference.
An IS-95 system can operate efficiently by estimating channel parameters at a receiver unit, which uses these estimated channel parameters to demodulate a received signal. The IS-95 system makes channel estimation efficient by requiring the transmission of a pilot signal from every base station. This pilot signal is a repeating PN-type sequence known by the receiver unit. Correlation of the received pilot signal with a local replica of the pilot signal enables the receiver unit to estimate the complex impulse response of the channel and adjust demodulator parameters accordingly. For the IS-95 waveform and system parameters it is not necessary or beneficial to report information on the channel conditions measured by the receiver unit back to the transmitter unit.
Given the ever-growing demand for wireless communication, a higher efficiency, higher performance wireless communications system is desirable. One type of higher performance wireless communications system is a Multiple Input/Multiple Output (MIMO) system that employs multiple transmit antennas to transmit over a propagation channel to multiple receive antennas. As in lower performance systems, the propagation channel in a MIMO system is subject to the deleterious effects of multipath, as well as interference from adjacent antennas. Multipath occurs when a transmitted signal arrives at a receiver unit through multiple propagation paths with differing delays. When signals arrive from multiple propagation paths, components of the signals can combine destructively, which is referred to as “fading.” In order to improve the efficiency and decrease the complexity of the MIMO system, information as to the characteristics of the propagation channel can be transmitted back to the transmitter unit in order to precondition the signal before transmission.
Preconditioning the signal can be difficult when the characteristics of the propagation channel change rapidly. The channel response can change with time due to the movement of the receiver unit or changes in the environment surrounding the receiver unit. Given a mobile environment, an optimal performance requires that information regarding channel characteristics, such as fading and interference statistics, be determined and transmitted quickly to the transmitter unit before the channel characteristics change significantly. As delay of the measurement and reporting process increases, the utility of the channel response information decreases. A present need exists for efficient techniques that will provide rapid determination of the channel characteristics.
SUMMARY OF THE INVENTION
The present invention is directed to a method and apparatus for the measuring and reporting of channel state information in a high efficiency, high performance communications system, comprising the steps of: generating a plurality of pilot signals; transmitting the plurality of pilot signals over a propagation channel between a transmitter unit and a plurality of receiver units, wherein the transmitter unit comprises at least one transmit antenna, each of the plurality of receiver units comprises at least one receive antenna, and the propagation channel comprises a plurality of sub-channels between the transmitter unit and the plurality of receiver units; receiving at least one of the plurality of pilot signals at each of the plurality of receiver units; determining a set of transmission characteristics for at least one of the plurality of sub-channels, wherein the step of determining the set of transmission characteristics uses at least one of the plurality of pilot signals received at each of the plurality of receiver units; reporting an information signal from each of the plurality of receiver units to the transmitter unit, wherein the information signal carries the set of transmission characteristics for at least one of the plurality of sub-channels; and optimizing a set of transmission parameters at the transmitter unit, based on the information signal.
In one aspect of the invention, pilot symbols are transmitted on a plurality of disjoint OFDM sub-channel sets. When the pilot symbols are transmitted on disjoint OFDM sub-channels, the characteristics of the propagation channel can be determined through a set of K sub-channels carrying the pilot symbols, wherein K is less than the number of OFDM sub-channels in the system. In addition to transmitting pilot symbols on disjoint sub-channels, the system can transmit a time-domain pilot sequence that can be used to determine characteristics of the propagation channel. Along with the generation and transmission of pilot symbols, an aspect of the invention is the compression of the amount of information necessary to reconstruct the characteristics of the propagation channel.


REFERENCES:
patent: 5170413 (1992-12-01), Hess et al.
patent: 5274836 (1993-12-01), Lux
patent: 5748683 (1998-05-01), Smith et al.
patent: 5790516 (1998-08-01), Gudmundson et al.
patent: 5914933 (1999-06-01), Cimini et al.
patent: 5933421 (1999-08-01), Alamouti et al.
patent: 6141393 (2000-10-01), Thomas et al.
patent: 6144711 (2000-11-01), Raleigh et al.
patent: 6151296 (2000-11-01), Vijayan et al.
patent: 6151328 (2000-11-01), Kwon et al.
patent: 0 683 576 (1995-11-01), None
patent: 00/04728 (2000-01-01), None
K.L. Baum et al., “A Comparison of Differential and Coherent Reception for a Coded OFDM System in a Low C/I Environment,” IEEE Global Telecommunications Conference. Phoenix, Arizona, Nov. 3-8, 1987, Global Telecommunications Conference New York, IEEE, Us, vol. 1, Nov. 3, 1997 (pp. 300-304).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for measuring reporting channel state... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for measuring reporting channel state..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for measuring reporting channel state... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2968805

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.